
Synopse mORMot Framework
Software Architecture Design 1.18
Date: October 24, 2014

 SAD - mORMot Framework - Rev. 1.18 Page 423 of 1642

1188.. MMVVCC//MMVVVVMM WWeebb aapppplliiccaattiioonnss

Adopt a mORMot

We will now explain how to build a MVC/MVVM web application using mORMot, starting from the "30
- MVC Server" sample.

This little web application publishes a simple BLOG, not fully finished yet (this is a Sample,
remember!). But you can still execute it in your desktop browser, or any mobile device (thanks to a
simple Bootstrap-based responsive design), and see the articles list, view one article and its
comments, view the author information, log in and out.

This sample is implemented as such:

MVVM Source mORMot

Model MVCModel.pas TSQLRestServerDB ORM over a SQlite3 database

View *.html Mustache template engine (page 410) in the Views sub-folder

ViewModel MVCViewModel.pas Defined as one IBlogApplication interface

For the sake of the simplicity, the sample will create some fake data in its own local SQlite3 database,
the first time it is executed.

18.1. MVCModel
The MVCModel.pas unit defines the database Model, as regular TSQLRecord classes.
For instance, you would find the following type definitions:

 TSQLContent = class(TSQLRecordTimeStamped)
 private ...

Synopse mORMot Framework
Software Architecture Design 1.18
Date: October 24, 2014

 SAD - mORMot Framework - Rev. 1.18 Page 424 of 1642

 published
 property Title: RawUTF8 index 80 read fTitle write fTitle;
 property Content: RawUTF8 read fContent write fContent;
 property Author: TSQLAuthor read fAuthor write fAuthor;
 property AuthorName: RawUTF8 index 50 read fAuthorName write fAuthorName;
 end;

 TSQLArticle = class(TSQLContent)
 private ...
 public
 class function CurrentPublishedMonth: Integer;
 class procedure InitializeTable(Server: TSQLRestServer; const FieldName: RawUTF8;
 Options: TSQLInitializeTableOptions); override;
 published
 property PublishedMonth: Integer read fPublishedMonth write fPublishedMonth;
 property Abstract: RawUTF8 index 1024 read fAbstract write fAbstract;
 end;

 TSQLComment = class(TSQLContent)
 private ...
 published
 property Article: TSQLArticle read fArticle write fArticle;
 end;

Then the whole database model will be created in this function:

function CreateModel: TSQLModel;
begin
 result := TSQLModel.Create([TSQLBlogInfo,TSQLCategory,TSQLAuthor,
 TSQLArticle,TSQLComment],'blog');
 TSQLArticle.AddFilterOrValidate('Title',TSynFilterTrim.Create);
 TSQLArticle.AddFilterOrValidate('Title',TSynValidateText.Create);
 TSQLArticle.AddFilterOrValidate('Content',TSynFilterTrim.Create);
 TSQLArticle.AddFilterOrValidate('Content',TSynValidateText.Create);
end;

As you can discover:
- We used class inheritance to gather properties for similar tables;
- Some classes are not part of the model, since they are just abstract parents, e.g. TSQLContent is

not part of the model, but TSQLArticle and TSQLComment are;
- We defined some regular one-to-one relationships, e.g. every Content (which may be either an

Article or a Comment) will be tied to one Author - see "One to one" or "One to many" (page 130);
- We defined some regular one-to-many relationships, e.g. every Comment will be tied to one

Article;
- Some properties are defined (and stored) twice, e.g. TSQLContent defines one AuthorName field in

addition to the Author ID field, as a convenient direct access to the author name, therefore
avoiding a JOINed query at each Article or a Comment display - see Shared nothing architecture (or
sharding) (page 133);

- We defined the maximum expected width for text fields (e.g. via Title: RawUTF8 index 80), even if
it won't be used by SQLite3 - it would ease any eventual migration to an external database, in the
future - see External database access (page 205);

- Some validation rules are set using TSQLArticle.AddFilterOrValidate() method, which would
be applied before an article is stored;

- The whole application would run without writing any SQL, but just high-level ORM methods;
- Even if we want to avoid writing SQL, we tried to modelize the data to fit regular RDBMS

expectations, e.g. for most used queries (like the one run from the main page of the BLOG).

Foreign keys and indexes are managed as such:
- The TSQLRecord.ID primary key of any ORM class will be indexed;
- For both one-to-one and one-to-many relationships, indexes are created by the ORM: for instance,

Synopse mORMot Framework
Software Architecture Design 1.18
Date: October 24, 2014

 SAD - mORMot Framework - Rev. 1.18 Page 425 of 1642

TSQLArticle.Author and TSQLComment.Author will be indexed, just as TSQLComment.Article;
- An index would be needed for TSQLArticle.PublishedMonth field, which is used to display a list

of publication months in the main BLOG page, and link to the corresponding articles.
The following code will take care of it:

class procedure TSQLArticle.InitializeTable(Server: TSQLRestServer;
 const FieldName: RawUTF8; Options: TSQLInitializeTableOptions);
begin
 inherited;
 if (FieldName='') or (FieldName='PublishedMonth') then
 Server.CreateSQLIndex(TSQLArticle,'PublishedMonth',false);
end;

The ORM is defined to run over a SQLite3 database in the main MVCServer.dpr program, then served
via a HTTP server as defined in MVCServer.dpr:

 aModel := CreateModel;
 try
 aServer := TSQLRestServerDB.Create(aModel,ChangeFileExt(paramstr(0),'.db'));
 try
 aServer.DB.Synchronous := smNormal;
 aServer.DB.LockingMode := lmExclusive;
 aServer.CreateMissingTables;
 aApplication := TBlogApplication.Create(aServer);
 try
 aHTTPServer := TSQLHttpServer.Create('8092',aServer,'+',useHttpApiRegisteringURI);
 try
 aHTTPServer.RootRedirectToURI('blog/default'); // redirect localhost:8092
 writeln('"MVC Blog Server" launched on port 8092');

In comparison to a regular Client-Server process (page 264), we instantiated a TBlogApplication,
which will inject the MVC behavior to aServer and aHTTPServer. The same mORMot program could
be used as a RESTful server for remote Object-Relational Mapping (ORM) (page 78) and
Service-Oriented Architecture (SOA) (page 76), and also for publishing a web application, sharing the
same data and business logic, over a single HTTP URI and port.
A call to RootRedirectToURI() will let any http://localhost:8092.. HTTP request be redirected to
http://localhost:8092/blog/default.. which is our BLOG application main page. The other URIs could be
used as usual, as any mORMot's JSON RESTful Client-Server (page 243).

18.2. MVCViewModel

18.2.1. Defining the commands
The MVCViewModel.pas unit defines the Controller (or ViewModel) of the "30 - MVC Server" sample
application.
It uses the mORMotMVC.pas unit , which is the main MVC kernel for the framework, allowing to easily
create Controllers binding the ORM/SOA features (mORMot.pas) to the Mustache Views
(SynMustache.pas).

First of all, we defined an interface, with the expected methods corresponding to the various
commands of the web application:

 IBlogApplication = interface(IMVCApplication)
 procedure ArticleView(
 ID: integer; var WithComments: boolean; Direction: integer;
 out Article: TSQLArticle; out Author: TSQLAuthor;
 out Comments: TObjectList);
 procedure AuthorView(
 var ID: integer; out Author: variant; out Articles: RawJSON);

Synopse mORMot Framework
Software Architecture Design 1.18
Date: October 24, 2014

 SAD - mORMot Framework - Rev. 1.18 Page 426 of 1642

 function Login(
 const LogonName,PlainPassword: RawUTF8): TMVCAction;
 function Logout: TMVCAction;
 procedure ArticleEdit(
 var ID: integer; const Title,Content: RawUTF8;
 const ValidationError: variant;
 out Article: TSQLArticle);
 function ArticleCommit(
 ID: integer; const Title,Content: RawUTF8): TMVCAction;
 end;

In fact, IMVCApplication is defined as such in mORMotMVC.pas:

 IMVCApplication = interface(IInvokable)
 ['{C48718BF-861B-448A-B593-8012DB51E15D}']
 procedure Default(var Scope: variant);
 procedure Error(var Msg: RawUTF8; var Scope: variant);
 end;

As such, the IBlogApplication will define the following web pages, corresponding to each of its
methods: Default, Error, ArticleView, AuthorView, Login, Logout, ArticleEdit and ArticleCommit. Each
command of this application will map an URI, e.g. /blog/default or /blog/login - remember that
our model defined 'blog' as its root URI. You may let all commands be accessible from a sub-URI (e.g.
/blog/web/default), but here this is not needed, since we are creating a "pure web" application.

Each command will have its own View. For instance, you will find Default.html, Error.html or
ArticleView.html in the "Views" sub-folder of the sample. If you did not supply any file in this folder,
some void files would be created.

Incoming method parameters of each method (i.e. defined as const or var) will be transmitted on the
URI, encoded as regular HTTP parameters, whereas outgoing method parameters (i.e. defined as var
or out) would be transmitted to the View, as data context for the rendering. Simple types are
transmitted (like integer or RawUTF8); but you would also find ORM classes (like TSQLAuthor), an
outgoing TObjectList, or some variant - which may be either values or a complex TDocVariant
custom variant type (page 97).

In fact, you may find out that the Login, Logout and ArticleCommit methods do not have any outgoing
parameters, but were defined as function returning a TMVCAction record.
This type is declared as such in mORMotMVC.pas:

 TMVCAction = record
 RedirectToMethodName: RawUTF8;
 RedirectToMethodParameters: RawUTF8;
 ReturnedStatus: cardinal;
 end;

Any method returning a TMVCAction content won't render directly any view, but will allow to go
directly to another method, for proper rendering, just by providing a method name and some optional
parameters.
Note that even the regular views, i.e. the methods which do not have this TMVCAction parameter,
may break the default rendering process on any error, raising an EMVCApplication exception which
will in fact redirect the view to another page, mainly the Error page.

To better understand how it works, run the "30 - MVC Server" sample. Remember that to be able to
register the port #8092 for the http.sys server, you would need to run the MVCServer.exe program
at least once with Windows Administrator rights - see URI authorization as Administrator (page 272).
Then point your browser to http://localhost:8092/.. - you will see the main page of the BLOG, filled
with some random data. Quite some "blabla", to be sincere!

What you see is the Default page rendered. The IBlogApplication.Default() method has been

Synopse mORMot Framework
Software Architecture Design 1.18
Date: October 24, 2014

 SAD - mORMot Framework - Rev. 1.18 Page 427 of 1642

called, then the outgoing Scope data has been rendered by the Default.html Mustache template.

If you click on an article title, it will go to http://localhost:8092/blog/articleView?id=99.. - i.e. calling
IBlogApplication.ArticleView() with the ID parameter containing 99, and other incoming
parameters (i.e. WithComments and Direction) set to their default value (i.e. respectively false and
0). The ArticleView() method will then read the TSQLArticle data from the ORM, then send it to
the ArticleView.html Mustache template.

Now, just change in your browser the URI from http://localhost:8092/blog/articleView?id=99.. (here
we clicked on the Article with ID=99) into http://localhost:8092/blog/articleView/json?id=99.. (i.e.
entering /articleView/json instead of /articleView, as a fake sub-URI).
Now the browser is showing you the JSON data context, as transmitted to the ArticleView.html
template. Just check both the JSON content and the corresponding Mustache template: I think you will
find out how it works. Take a look at Mustache template engine (page 410) as reference.

From any blog article view, click on the "Show Comments" button: you are redirected to a new page, at
URI http://localhost:8092/blog/ArticleView?id=99&withComments=true#comments.. and now the
comments corresponding to the article are displayed. If you click on the "Previous" or "Next"
buttons, a new URI http://localhost:8092/blog/ArticleView?id=99&withComments=true&direction=1..
will be submitted: in fact, direction=1 will search for the previous article, and we still have the
withComments=true parameter set, so that the user would be able to see the comments, as expected.
If you click on the "Hide Comments" button, the URI would change to be without any
withComments=true parameter - i.e. http://localhost:8092/blog/ArticleView?id=98#comments.. : now
the comments won't be displayed.

The sequence is rendered as such:

Synopse mORMot Framework
Software Architecture Design 1.18
Date: October 24, 2014

 SAD - mORMot Framework - Rev. 1.18 Page 428 of 1642

/blog/default URI

Default()

routing + decode
incoming params

to controller method

{Scope:{articles:[....

outgoing params
encoded as JSON

default.html
template

rendering
data context

main blog web page
with list of articles

Mustache
engine

/blog/articleView?id=99

ArticleView(ID=99)

routing + decode
incoming params

to controller method

{WithComments=false,
Article={ID=99,Author:1,...

Comments:[],...

outgoing params
encoded as JSON

articleView.html
template

rendering
data context

web page
with one article

without comments

Mustache
engine

/blog/articleView?id=99&withcomments=true

ArticleView(ID=99,WithComments=true)

routing + decode
incoming params

to controller method

{WithComments=true,
Article={ID=99,Author:1,...

Comments:[
{ID:163],...

outgoing params
encoded as JSON

 articleView.html
template

rendering
data context

web page
with one article

and its comments

Mustache
engine

mORMot MVC/MVVM URI - Commands sequence

In this diagram, we can see that each HTTP request is stateless, uncoupled from the previous. The user
experience is created by changing the URI with additional parameters (like withComments=true).
This is how the web works.

Then try to go to http://localhost:8092/blog/mvc-info.. - and check out the page which appears.
You will get all the information corresponding to your application, especially a list of all available
commands:

/blog/Default?Scope=..[variant]..
/blog/Error?Msg=..[string]..&Scope=..[variant]..
/blog/ArticleView?ID=..[integer]..&WithComments=..[boolean]..&Direction=..[integer]..
/blog/AuthorView?ID=..[integer]..
/blog/Login?LogonName=..[string]..&PlainPassword=..[string]..
/blog/Logout
/blog/ArticleEdit?ID=..[integer]..&Title=..[string]..&Content=..[string]..&ValidationError=..[vari
ant]..
/blog/ArticleCommit?ID=..[integer]..&Title=..[string]..&Content=..[string]..

And every view, including its data context, e.g.

/blog/AuthorView?ID=..[integer]..
{{Main}}: variant
{{ID}}: integer
{{Author}}: TSQLAuthor
{{Articles}}: variant

Synopse mORMot Framework
Software Architecture Design 1.18
Date: October 24, 2014

 SAD - mORMot Framework - Rev. 1.18 Page 429 of 1642

You may use this page as reference when writing your Mustache Views. It will reflect the exact state of
the running application.

18.2.2. Implementing the Controller
To build the application Controller, we would need to implement our IBlogApplication interface.

 TBlogApplication = class(TMVCApplication,IBlogApplication)
 ...
 public
 constructor Create(aServer: TSQLRestServer); reintroduce;
 procedure Default(var Scope: variant);
 procedure ArticleView(ID: integer; var WithComments: boolean;
 Direction: integer;
 out Article: TSQLArticle; out Author: variant;
 out Comments: TObjectList);
 ...
 end;

We defined a new class, inheriting from TMVCApplication - as defined in mORMotMVC.pas, and
implementing our expected interface. TMVCApplication will do all the low-level plumbing for you,
using a set of implementation classes.

Let's implement a simple command:

procedure TBlogApplication.AuthorView(var ID: integer; out Author: TSQLAuthor;
 out Articles: RawJSON);
begin
 RestModel.Retrieve(ID,Author);
 if Author.ID<>0 then
 Articles := RestModel.RetrieveListJSON(
 TSQLArticle,'Author=? order by id desc limit 50',[ID],ARTICLE_FIELDS) else
 raise EMVCApplication.CreateGotoError(HTML_NOTFOUND);
end;

By convention, all parameters are allocated when TMVCApplication will execute a method. So you do
not need to allocate or handle the Author: TSQLAuthor instance lifetime.
You have direct access to the underlying TSQLRest instance via TMVCApplication.RestModel: so all
CRUD operations are available. You can let the ORM do the low level SQL work for you: to retrieve all
information about one TSQLAuthor and get the list of its associated articles, we just use a TSQLRest
method with the appropriate WHERE clause. Here we returned the list of articles as a RawJSON, so that
they will be transmitted as a JSON array, without any intermediate marshalling to TSQLArticle
instances.
In case of any error, an EMVCApplication will be raised: when such an exception happens, the
TMVCApplication will handle and convert it into a page change, and a redirection to the
IBlogApplication.Error() method, which will return an error page, using the Error.html view
template.

Let's take a look at a bit more complex method, which we talked about in mORMot MVC/MVVM URI -
Commands sequence (page 427):

procedure TBlogApplication.ArticleView(
 ID: integer; var WithComments: boolean; Direction: integer;
 out Article: TSQLArticle; out Author: variant; out Comments: TObjectList);
var newID: integer;
const WHERE: array[1..2] of PUTF8Char = (
 'ID<? order by id desc','ID>? order by id');
begin
 if Direction in [1,2] then // allows fast paging using index on ID
 if RestModel.OneFieldValue(TSQLArticle,'ID',WHERE[Direction],[],[ID],newID) and
 (newID<>0) then
 ID := newID;

Synopse mORMot Framework
Software Architecture Design 1.18
Date: October 24, 2014

 SAD - mORMot Framework - Rev. 1.18 Page 430 of 1642

 RestModel.Retrieve(ID,Article);
 if Article.ID<>0 then begin
 Author := RestModel.RetrieveDocVariant(
 TSQLAuthor,'ID=?',[Article.Author.ID],'FirstName,FamilyName');
 if WithComments then begin
 Comments.Free; // we will override the TObjectList created at input
 Comments := RestModel.RetrieveList(TSQLComment,'Article=?',[Article.ID]);
 end;
 end else
 raise EMVCApplication.CreateGotoError(HTML_NOTFOUND);
end;

This method has to manage several use cases:
- Display an Article from the database;
- Retrieve the Author first name and family name;
- Optionally display the associated Comments;
- Optionally get the previous or next Article;
- Trigger an error in case of an invalid request.

Reading the above code is enough to understand how those 5 features are implemented in this
method. The incoming parameters, as triggered by the Views, are used to identify the action to be
taken. Then TMVCApplication.RestModel methods are used to retrieve the needed information
directly from the ORM. Outgoing parameters (Article,Author,Comments) are transmitted to the
Mustache View, for rendering.

In fact, there are several ways to retrieve your data, using the RestModel ORM methods. For instance,
in the above code, we used a TObjectList to transmit our comments.
But we may have used a TDocVariant custom variant type (page 97) parameter:

procedure TBlogApplication.ArticleView(
 ID: integer; var WithComments: boolean; Direction: integer;
 out Article: TSQLArticle; out Author: variant; out Comments: variant);
 ...
 if WithComments then
 Comments := RestModel.RetrieveDocVariantArray(TSQLComment,'','Article=?',[Article.ID],'');

Or with a RawJSON kind of output parameter:

procedure TBlogApplication.ArticleView(
 ID: integer; var WithComments: boolean; Direction: integer;
 out Article: TSQLArticle; out Author: variant; out Comments: RawJSON);
 ...
 if WithComments then
 Comments := RestModel.RetrieveListJSON(TSQLComment,'Article=?',[Article.ID],'');

Using a RawJSON will be in fact the fastest way of processing the information on the server side. If your
purpose is just to retrieve some data and push it back to the view, RawJSON is just perfect. But having a
TObjectList may be convenient if you need to run some TSQLRecord methods on the returned list;
or a TDocVariant array may have its needs, if you want to create some meta-object gathering all
information, e.g. for Scope as returned by the Default method:

procedure TBlogApplication.Default(var Scope: variant);
 ...
 if not fDefaultData.AddExistingProp('Archives',Scope) then
 fDefaultData.AddNewProp('Archives',RestModel.RetrieveDocVariantArray(
 TSQLArticle,'','group by PublishedMonth order by PublishedMonth desc limit 12',[],
 'distinct(PublishedMonth),max(ID)+1 as FirstID'),Scope);
end;

You can notice how the calendar months are retrieved from the database, using a safe
fDefaultData: ILockedDocVariant private field to store the value as cache, in a thread-safe manner
(we will see later more about how to implement thread-safety). If the 'Archives' value is in the

Synopse mORMot Framework
Software Architecture Design 1.18
Date: October 24, 2014

 SAD - mORMot Framework - Rev. 1.18 Page 431 of 1642

fDefaultData cache, it will be returned immediately as part of the Scope returned document.
Otherwise, it will use RestModel.RetrieveDocVariantArray to retrieve the last 12 available months.
When a new Article is created, or modified, TBlogApplication.FlushAnyCache will call
fDefaultData.Clear to ensure that the updated information will be retrieved from the database on
next Default() call.

The above ORM request will generate the following SQL statement:

 SELECT distinct(PublishedMonth),max(ID)+1 as FirstID FROM Article
 group by PublishedMonth order by PublishedMonth desc limit 12

The Default() method will therefore return the following JSON context:

{
 "Scope": {
 ...
 "Archives":
 [
 {
 "PublishedMonth": 24178,
 "FirstID": 101
 },
 {
 "PublishedMonth": 24177,
 "FirstID": 100
 },
 ...

... which will be processed by the Mustache engine.
If you put a breakpoint at the end of this Default() method, and inspect the "Scope" variable, the
Delphi debugger will in fact show you in real time the exact JSON content, retrieved from the ORM.

I suspect you just find out how mORMot's ORM/SOA abilites, and JSON / TDocVariant offer amazing
means of processing your data. You have the best of both worlds: ORM/SOA gives you fixed structures
and strong typing (like in C++/C#/Java), whereas TDocVariant gives you a flexible object scheme,
using late-binding to access its content (like in Python/Ruby/JavaScript).

18.2.3. Controller Thread Safety
When run from a TSQLRestServer instance, our MVC application commands will be executed by
default without any thread protection. When hosted within a TSQLHttpServer instance - see
High-performance http.sys server (page 271) - several threads may execute the same Controller
methods at the same time. It is therefore up to your application code to ensure that your
TMVCApplication process is thread safe.

Note that by design, all TMVCApplication.RestModel ORM methods are thread-safe.
If your Controller business code only uses ORM methods, sending back the information to the Views,
without storing any data locally, it will be perfectly thread safe.
See for instance the TBlogApplication.AuthorView method we described above.

But consider this method (simplified from the real "30 - MVC Server" sample):

type
 TBlogApplication = class(TMVCApplication,IBlogApplication)
 protected
 fDefaultArticles: variant;
 ...

procedure TBlogApplication.Default(var Scope: variant);
begin
 if VarIsEmpty(fDefaultArticles) then

Synopse mORMot Framework
Software Architecture Design 1.18
Date: October 24, 2014

 SAD - mORMot Framework - Rev. 1.18 Page 432 of 1642

 fDefaultArticles := RestModel.RetrieveDocVariantArray(
 TSQLArticle,'','order by ID desc limit 20',[],ARTICLE_FIELDS);
 _ObjAddProps(['Articles',fDefaultArticles],Scope);
end;

In fact, even if this method may sound safe, we have an issue when it is executed by several threads:
one thread may be assigning a value to fDefaultArticles, whereas another thread may be using the
fDefaultArticles content. This may result into random runtime errors, very difficult to solve. Even
creating a local variable may not be safe, since any access to fDefaultArticles should be protected.

A first - and brutal - solution could be to force the TSQLRestServer instance to execute all
method-based services (including our MVC commands) in a giant lock, as stated about Thread-safety
(page 278):

 aServer.AcquireExecutionMode[execSOAByMethod] := amLocked; // or amBackgroundThread

But this may slow down the whole server process, and reduce its scaling abilities.

You could also lock explictly the Controller method, for instance:

procedure TBlogApplication.Default(var Scope: variant);
begin
 Locker.ProtectMethod;
 if VarIsEmpty(fDefaultData) then
 ...

Using the TMVCApplication.Locker: IAutoLocker is a simple and efficient way of protecting your
method. In fact, ProtectMethod will return an IUnknown variable, which will let the compiler create
an hidden try .. finally block in the method body, to release the lock when it quits. But this locker
would be shared by the whole TMVCApplication instance, so will be like a giant lock on your
Controller process.

A more tuned and safe implementation may be to use a ILockedDocVariant instead of a plain
TDocVariant for caching the data. You may therefore write:

type
 TBlogApplication = class(TMVCApplication,IBlogApplication)
 protected
 fDefaultData: ILockedDocVariant;
 ...
constructor TBlogApplication.Create(aServer: TSQLRestServer);
begin
 fDefaultData := TLockedDocVariant.Create;
 ...

procedure TBlogApplication.Default(var Scope: variant);
begin
 if not fDefaultData.AddExistingProp('Articles',Scope) then
 fDefaultData.AddNewProp('Articles',RestModel.RetrieveDocVariantArray(
 TSQLArticle,'','order by ID desc limit 20',[],ARTICLE_FIELDS),Scope);
end;

Using ILockedDocVariant will ensure that only access to this resource will be locked (no giant lock
any more), and that slow ORM process (like RestModel.RetrieveDocVariantArray) would take
place lock-free, to maximize the resource usage.
This is in fact the pattern used by the "30 - MVC Server" sample.

18.2.4. Web Sessions
Sessions are usually implemented via cookies, in web sites. A login/logout procedure enhances
security of the web application, and User experience can be tuned via small persistence of
client-driven data. The TMVCApplication class allows creating such sessions.

Synopse mORMot Framework
Software Architecture Design 1.18
Date: October 24, 2014

 SAD - mORMot Framework - Rev. 1.18 Page 433 of 1642

You can store whatever information you need within the client-side cookie. You can define a record,
which will be used to store the information as optimized binary, in the browser cache. You can use this
cookie information as a cache to the current session, e.g. storing the logged user display name or its
rights - avoiding a round trip to the database.
Of course, you should never trust the cookie content (even if our format uses a digital signature via a
crc32 algorithm). But you can use it as a convenient cache, always checking the real data in the
database when you are about to perform the action.

For our "30 - MVC Server" sample application, we defined the following record in MVCViewModel.pas:

 TCookieData = packed record
 AuthorName: RawUTF8;
 AuthorID: cardinal;
 AuthorRights: TSQLAuthorRights;
 end;

This record will be serialized in two ways:
- As raw binary, without the field names, within the cookie, after Base64 encoding and digital

signature;
- As a JSON object, with explicit field names, when transmitted to the Views.

In order to have proper JSON serialization of the record, you would need to specify its structure, if
you use a version of Delphi without the new RTII (i.e. before Delphi 2010) - see Record serialization
(page 245).

Then we can use the TMVCApplication.CurrentSession property to perform the authentication:

function TBlogApplication.Login(const LogonName, PlainPassword: RawUTF8): TMVCAction;
var Author: TSQLAuthor;
 SessionInfo: TCookieData;
begin
 if CurrentSession.CheckAndRetrieve<>0 then begin
 GotoError(result,HTML_BADREQUEST);
 exit;
 end;
 Author := TSQLAuthor.Create(RestModel,'LogonName=?',[LogonName]);
 try
 if (Author.ID<>0) and Author.CheckPlainPassword(PlainPassword) then begin
 SessionInfo.AuthorName := Author.LogonName;
 SessionInfo.AuthorID := Author.ID;
 SessionInfo.AuthorRights := Author.Rights;
 CurrentSession.Initialize(@SessionInfo,TypeInfo(TCookieData));
 GotoDefault(result);
 end else
 GotoError(result,sErrorInvalidLogin);
 finally
 Author.Free;
 end;
end;

As you can see, this Login() method will be trigerred from http://localhost:8092/blog/login.. with
LogonName=...&plainpassword=... parameters. It will first check that there is no current session,
retrieve the ORM Author corresponding to the LogonName, check the supplied password, and set the
SessionInfo: TCookieData structure with the needed information.
A call to CurrentSession.Initialize() will compute the cookie, then prepare to send it to the
client browser.

The Login() method returns a TMVCAction structure. As a consequence, the call to
GotoDefault(result) will let the TMVCApplication processor render the Default() method, as if
the /blog/default URI would have been requested.

Synopse mORMot Framework
Software Architecture Design 1.18
Date: October 24, 2014

 SAD - mORMot Framework - Rev. 1.18 Page 434 of 1642

When a web page is computed, the following overriden method will be executed:

function TBlogApplication.GetViewInfo(MethodIndex: integer): variant;
begin
 result := inherited GetViewInfo(MethodIndex);
 _ObjAddProps(['blog',fBlogMainInfo,
 'session',CurrentSession.CheckAndRetrieveInfo(TypeInfo(TCookieData))],result);
end;

It will append the session information from the cookie to the returned View data context, as such:

{
 "Scope": {
 "articles":
 ...
 },
 "main": {
 "pageName": "Default",
 "blog": {
 "Title": "mORMot BLOG",
 ...
 },
 "session": {
 "AuthorName": "synopse",
 "AuthorID": 1,
 "AuthorRights": {
 "canComment": true,
 "canPost": true,
 "canDelete": true,
 "canAdministrate": true
 },
 "id": 1
 }
 }
}

Here, the session object will contain the TCookieData information, ready to be processed by the
Mustache View.

When the browser asks for the /blog/logout URI, the following method will be executed:

function TBlogApplication.Logout: TMVCAction;
begin
 CurrentSession.Finalize;
 GotoDefault(result);
end;

The session cookie will then be deleted on the browser side.

18.3. Writing the Views
See Mustache template engine (page 410) for a description of how rendering take place in this
MVC/MVVM application. You would find the Mustache templates in the "Views" sub-folder of the "30
- MVC Server" sample application.

You will find some *.html files, one per command expecting a View, and some *.partial files, which
are some kind of re-usable sub-templates - we use them to easily compute the page header and
footer, and to have a convenient way of gathering some piece of template code, to be re-used in
several *.html views.

Here is how Default.html is defined:

{{>header}}
{{>masthead}}
 <div class="blog-header">

Synopse mORMot Framework
Software Architecture Design 1.18
Date: October 24, 2014

 SAD - mORMot Framework - Rev. 1.18 Page 435 of 1642

 <h1 class="blog-title">{{main.blog.title}}</h1>
 <p class="lead blog-description">{{main.blog.description}}</p>
 </div>
 <div class="row">
 <div class="col-sm-8 blog-main">
{{#Scope}}
{{>articlerow}}
 {{#lastID}}
 <p>Previous Articles</p>
 {{/lastID}}
 </div>
 <div class="col-sm-3 col-sm-offset-1 blog-sidebar">
 <div class="sidebar-module sidebar-module-inset">
 <h4>About</h4>
 {{{WikiToHtml main.blog.about}}}
 </div>
 <div class="sidebar-module">
 <h4>Archives</h4>
 <ol class="list-unstyled">
 {{#Archives}}
 {{MonthToText PublishedMonth}}
 {{/Archives}}

 </div>
 </div>
 </div>
{{/Scope}}
{{>footer}}

The {{>partials}} are easily identified, as other {{...}} value tags. The main partial is
{{>articlerow}}, which will display all articles list.
{{{WikiToHtml main.blog.about}}} is an Expression Block able to render some simple text into
proper HTML, using a simple Wiki syntax.
{{MonthToText PublishedMonth}} will execute a custom Expression Block, defined in our
TBlogApplication, which will convert the obfuscated TSQLArticle.PublishedMonth integer value
into the corresponding name and year:

procedure TBlogApplication.MonthToText(const Value: variant;
 out result: variant);
const MONTHS: array[0..11] of string = (
 'January','February','March','April','May','June','July','August',
 'September','October','November','December');
var month: integer;
begin
 if VariantToInteger(Value,month) and (month>0) then
 result := MONTHS[month mod 12]+' '+IntToStr(month div 12);
end;

The page displaying the Author information is in fact quite simple:

{{>header}}
{{>masthead}}
 <div class="blog-header">
 <h1 class="blog-title">User {{Author.LogonName}}</h1>
 <div class="lead blog-description">{{Author.FirstName}} {{Author.FamilyName}}
 </div>
 </div>
 <div class="panel panel-default">
 <div class="panel-heading">Information about {{Author.LogonName}}</div>
 <div class="panel-body">
 {{{TSQLAuthor.HtmlTable Author}}}
 </div>
 </div>
{{>articlerow}}
{{>footer}}

It will share the same {{>partials}}, for a consistent and maintainable web site design, but in fact

Synopse mORMot Framework
Software Architecture Design 1.18
Date: October 24, 2014

 SAD - mORMot Framework - Rev. 1.18 Page 436 of 1642

most of the process would take place by the magic of two tags:
- {{{TSQLAuthor.HtmlTable Author}}} is an Expression Block linked to

TMVCApplication.RestModel ORM, which will create a HTML table - with the syntax expected by
our BootStrap CSS - for a TSQLAuthor record, identifying the property types and display them as
expected (e.g. for dates or time stamps, or for enumerates or sets).

- {{>articlerow}} is a partial also shared with ArticleView.html, which will render a list of
TSQLArticle encoded as {{#Articles}}...{{/Articles}} sections.

Take a look at the mORMotMVC.pas unit: you will discover that every aspect of the MVC process has
been divided into small classes, so that the framework is able to create web applications, but also any
kind of MVC applications, including mobile or VCL/FMX apps, and/or reporting - using
mORMotReport.pas.

