Synopse

To content | To menu | To search

Tag - performance

Entries feed

2014, Monday April 28

Mustache Logic-less templates for Delphi - part 2

Mustache is a well-known logic-less template engine.
There is plenty of Open Source implementations around (including in JavaScript, which can be very convenient for AJAX applications on client side, for instance).
For mORMot, we created the first pure Delphi implementation of it, with a perfect integration with other bricks of the framework.

In this second part of this series of blog articles, we will introduce the Mustache syntax.
You can download this documentation as one single pdf file.

Continue reading...

Mustache Logic-less templates for Delphi - part 1

Mustache is a well-known logic-less template engine.
There is plenty of Open Source implementations around (including in JavaScript, which can be very convenient for AJAX applications on client side, for instance).
For mORMot, we created the first pure Delphi implementation of it, with a perfect integration with other bricks of the framework.

In this first part of this series of blog articles, we will introduce the Mustache design.
You can download this documentation as one single pdf file.

Continue reading...

2014, Friday April 18

Introducing mORMot's architecture and design principles

We have just released a set of slides introducing 

  • ORM, SOA, REST, JSON, MVC, MVVM, SOLID, Mocks/Stubs, Domain-Driven Design concepts with Delphi, 
  • and showing some sample code using our Open Source mORMot framework.

You can follow the public link on Google Drive!

This is a great opportunity to discovers some patterns you may not be familiar with, and find out how mORMot try to implement them.
This set of slides may be less intimidating than our huge documentation - do not be terrified by our Online Documentation!
The first set of pages (presenting architecture and design principles) is worth reading.

Feedback is welcome on our forum, as usual.

2014, Monday April 7

JavaScript support in mORMot via SpiderMonkey

As we already stated, we finished the first step of integration of the SpiderMonkey engine to our mORMot framework.
Version 1.8.5 of the library is already integrated, and latest official revision will be soon merged, thanks to mpv's great contribution.
It can be seen as stable, since it is already used on production site to serve more than 1,000,000 requests per day.

You can now easily uses JavaScript on both client and server side.
On server side, mORMot's implementation offers an unique concept, i.e. true multi-threading, which is IMHO a huge enhancement when compared to the regular node.js mono-threaded implementation, and its callback hell.
In fact, node.js official marketing states its non-blocking scheme is a plus. It allows to define a HTTP server in a few lines, but huge server applications need JavaScript experts not to sink into a state a disgrace.

Continue reading...

2014, Saturday March 29

Enhanced and fixed late-binding of variants for Delphi XE2 and up

For several units of our framework, we allow late-binding of data values, using a variant and direct named access to properties:
- In SynCommons, we defined our TDocVariant custom variant type, able to store any JSON/BSON document-based content;
- In SynBigTable, we use the TSynTableVariantType custom variant type, as defined in SynCommons;
- In SynDB, we defined a TSQLDBRowVariantType, ready to access any column of a RDBMS data result set row;
- In mORMot, we allow access to TSQLTableRowVariantType column values.

It's a very convenient way of accessing result rows values. Code is still very readable, and safe at the same time.

For instance, we can write:

var V: variant;
 ...
  TDocVariant.New(V); // or slightly slower V := TDocVariant.New;
  V.name := 'John';
  V.year := 1972;
  // now V contains {"name":"john","year":1982}

This is just another implementation of KISS design in our framework.

Since Delphi XE2, some modifications were introduced to the official DispInvoke() RTL implementation:

  1. A new varUStrArg kind of parameter has been defined, which will allow to transmit UnicodeString property values;
  2. All text property values would be transmitted as BSTR / WideString / varOleStr variants to the invoked variant type;
  3. All textual property names were normalized to be in UPPERCASE.

Those modifications are worth considering...
And we may have discovered two regressions: one about speed, and the other about an unexpected logic bug...

Continue reading...

2014, Friday March 7

Support of MySQL, DB2 and PostgreSQL

We just tested, benchmarked and validated Oracle MySQL, IBM DB2 and PostgreSQL support for our SynDB database classes and the mORMot's ORM core.
This article will also show all updated results, including our newly introduced multi-value INSERT statement generations, which speed up a lot BATCH insertion.

Stay tuned!

Purpose here is not to say that one library or database is better or faster than another, but publish a snapshot of mORMot persistence layer abilities, depending on each access library.

In this timing, we do not benchmark only the "pure" SQL/DB layer access (SynDB units), but the whole Client-Server ORM of our framework.

Process below includes all aspects of our ORM:

  • Access via high level CRUD methods (Add/Update/Delete/Retrieve, either per-object or in BATCH mode);
  • Read and write access of TSQLRecord instances, via optimized RTTI;
  • JSON marshaling of all values (ready to be transmitted over a network);
  • REST routing, with security, logging and statistic;
  • Virtual cross-database layer using its SQLite3 kernel;
  • SQL on-the-fly generation and translation (in virtual mode);
  • Access to the database engines via several libraries or providers.

In those tests, we just bypassed the communication layer, since TSQLRestClient and TSQLRestServer are run in-process, in the same thread - as a TSQLRestServerDB instance. So you have here some raw performance testimony of our framework's ORM and RESTful core, and may expect good scaling abilities when running on high-end hardware, over a network.

On a recent notebook computer (Core i7 and SSD drive), depending on the back-end database interfaced, mORMot excels in speed, as will show the following benchmark:

  • You can persist up to 570,000 objects per second, or retrieve 870,000 objects per second (for our pure Delphi in-memory engine);
  • When data is retrieved from server or client 38, you can read more than 900,000 objects per second, whatever the database back-end is;
  • With a high-performance database like Oracle, and our direct access classes, you can write 70,000 (via array binding) and read 160,000 objects per second, over a 100 MB network;
  • When using alternate database access libraries (e.g. Zeos, or DB.pas based classes), speed is lower (even if comparable for DB2, MS SQL, PostgreSQL, MySQL) but still enough for most work, due to some optimizations in the mORMot code (e.g. caching of prepared statements, SQL multi-values insertion, direct export to/from JSON, SQlite3 virtual mode design, avoid most temporary memory allocation...).

Difficult to find a faster ORM, I suspect.

Continue reading...

2014, Monday March 3

ORM enhanced for BATCH insert

We just committed some nice features to the ORM kernel, and SynDB* classes of our mORMot framework.

During BATCH insertion, the ORM is able to generate some optimized SQL statements, depending on the target database, to send several rows of data at once.
It induces a noticeable speed increase when saving several objects into an external database.

This feature is available for SQlite3 (3.7.11 and later), MySQL, PostgreSQL, MS SQL Server (2008 and up), Oracle, Firebird and NexusDB.
Since it is working at SQL level, it is available for all supported access libraries, e.g. ODBC, OleDB, Zeos/ZDBC, UniDAC, FireDAC.
It means that even properties not implementing array binding (like OleDB, Zeos or UniDAC) are able to have a huge boost at data insertion, ready to compete with the (until now) more optimized libraries.

Continue reading...

2014, Tuesday February 25

TDocVariant custom variant type

With revision 1.18 of the framework, we just introduced two new custom types of variants:

  • TDocVariant kind of variant;
  • TBSONVariant kind of variant.

The second custom type (which handles MongoDB-specific extensions - like ObjectID or other specific types like dates or binary) will be presented later, when dealing with MongoDB support in mORMot, together with the BSON kind of content. BSON / MongoDB support is implemented in the SynMongoDB.pas unit.

We will now focus on TDocVariant itself, which is a generic container of JSON-like objects or arrays.
This custom variant type is implemented in SynCommons.pas unit, so is ready to be used everywhere in your code, even without any link to the mORMot ORM kernel, or MongoDB.

TDocVariant documents

TDocVariant implements a custom variant type which can be used to store any JSON/BSON document-based content, i.e. either:

  • Name/value pairs, for object-oriented documents;
  • An array of values (including nested documents), for array-oriented documents;
  • Any combination of the two, by nesting TDocVariant instances.

Here are the main features of this custom variant type:

  • DOM approach of any object or array documents;
  • Perfect storage for dynamic value-objects content, with a schema-less approach (as you may be used to in scripting languages like Python or JavaScript);
  • Allow nested documents, with no depth limitation but the available memory;
  • Assignment can be either per-value (default, safest but slower when containing a lot of nested data), or per-reference (immediate reference-counted assignment);
  • Very fast JSON serialization / un-serialization with support of MongoDB-like extended syntax;
  • Access to properties in code, via late-binding (including almost no speed penalty due to our VCL hack as already detailed);
  • Direct access to the internal variant names and values arrays from code, by trans-typing into a TDocVariantData record;
  • Instance life-time is managed by the compiler (like any other variant type), without the need to use interfaces or explicit try..finally blocks;
  • Optimized to use as little memory and CPU resource as possible (in contrast to most other libraries, it does not allocate one class instance per node, but rely on pre-allocated arrays);
  • Opened to extension of any content storage - for instance, it will perfectly integrate with BSON serialization and custom MongoDB types (ObjectID, RegEx...), to be used in conjunction with MongoDB servers;
  • Perfectly integrated with our Dynamic array wrapper and its JSON serialization as with the record serialization;
  • Designed to work with our mORMot ORM: any TSQLRecord instance containing such variant custom types as published properties will be recognized by the ORM core, and work as expected with any database back-end (storing the content as JSON in a TEXT column);
  • Designed to work with our mORMot SOA: any interface-based service is able to consume or publish such kind of content, as variant kind of parameters;
  • Fully integrated with the Delphi IDE: any variant instance will be displayed as JSON in the IDE debugger, making it very convenient to work with.

To create instances of such variant, you can use some easy-to-remember functions:

  • _Obj() _ObjFast() global functions to create a variant object document;
  • _Arr() _ArrFast() global functions to create a variant array document;
  • _Json() _JsonFast() _JsonFmt() _JsonFastFmt() global functions to create any variant object or array document from JSON, supplied either with standard or MongoDB-extended syntax.

Continue reading...

2013, Tuesday December 10

JSON record serialization

In Delphi, the record has some nice advantages:

  • record are value objects, i.e. accessed by value, not by reference - this can be very convenient, e.g. when defining a Domain-Driven Design
  • record can contain any other record or dynamic array, so are very convenient to work with (no need to define sub-classes or lists); 
  • record variables can be allocated on stack, so won't solicit the global heap; 
  • record instances automatically freed by the compiler when they come out of scope, so you won't need to write any try..finally Free; end block.

Serialization of record values are therefore a must-have for a framework like mORMot.

In recent commits, this JSON serialization of record has been enhanced.
In particular, we introduced JSON serialization via a new text-based record definition.

Continue reading...

2013, Thursday December 5

New Open Source Multi-Thread ready Memory Manager: SAPMM

Do you remember this former article about scalability of the Delphi memory manager, in multi-thread execution context?

Our SynScaleMM is still experimental.
But did pretty well, for an experiment!

At first, you can take a look at ScaleMM2, which is more stable, and based on the same ground.

But a new multi-thread friendly memory manager for Delphi just came out.
It is in fact the anonymous (and already famous) "NN memory manager" Primož talked about in his article about string building and memory managers.


(Note that in this article, our SynScaleMM was found to be scaling very well, but on the other hand, Primož did compile its benchmark program in Debug mode, so our TTextWriter was not in good shape: when you compile in Release mode, optimizations and inlining are ON, and our good TTextWriter just flies... See the note at the beginning of the article - this is why I never find those benchmarks very informative. I always prefer profiling from the real world with real useful process… and was never convinced by any such naive benchmark.)

OK, back to our business!

SapMM is an interesting beast.
https://code.google.com/p/sapmm

Sounds like if Alexei (the initial coder) has a C coding background. But that's fine when you have to deal with low-level structures and algorithms, as required by a memory manager. :)
It features everything we may ask for such a piece of code: clear design, optimized code (mostly by inlining process), memory leak reporting, some parameters for tuning.

It is only for Delphi XE (and up) under Win32 by now, but contributors are welcome!
It is used in production since more than half a year, and it passed all FastcodeMM benchmark tests.

If you want a direct link of the today's source code, without SVN, you may try this direct link from our site.
(but it probably will never be updated - you are warned)

Continue reading...

2013, Monday November 4

Updated mORMot database benchmark - including MS SQL and PostgreSQL

On an recent notebook computer (Core i7 and SSD drive), depending on the back-end database interfaced, mORMot excels in speed:

  • You can persist up to 570,000 objects per second, or retrieve more than 900,000 objects per second (for our pure Delphi in-memory engine);
  • When data is retrieved from server or client cache, you can read more than 900,000 objects per second, whatever the database back-end is;
  • With a high-performance database like Oracle and our direct access classes, you can write 65,000 (via array binding) and read 160,000 objects per second, over a 100 MB network;
  • When using alternate database access libraries (e.g. Zeos, or DB.pas based classes), speed is lower, but still enough for most work.

Difficult to find a faster ORM, I suspect.

The following tables try to sum up all available possibilities, and give some benchmark (average objects/second for writing or read).

In these tables:

  • 'SQLite3 (file full/off/exc)' indicates use of the internal SQLite3 engine, with or without Synchronous := smOff and/or DB.LockingMode := lmExclusive;
  • 'SQLite3 (mem)' stands for the internal SQLite3 engine running in memory;
  • 'SQLite3 (ext ...)' is about access to a SQLite3 engine as external database - either as file or memory;
  • 'TObjectList' indicates a TSQLRestServerStaticInMemory instance, either static (with no SQL support) or virtual (i.e. SQL featured via SQLite3 virtual table mechanism) which may persist the data on disk as JSON or compressed binary;
  • 'Oracle' shows the results of our direct OCI access layer (SynDBOracle.pas);
  • 'NexusDB' is the free embedded edition, available from official site;
  • 'Zeos *' indicates that the database was accessed directly via the ZDBC layer;
  • 'FireDAC *' stands for FireDAC library;
  • 'UniDAC *' stands for UniDAC library;
  • 'BDE *' when using a BDE connection;
  • 'ODBC *' for a direct access to ODBC;
  • 'Jet' stands for a MSAccess database engine, accessed via OleDB;
  • 'MSSQL local' for a local connection to a MS SQL Express 2008 R2 running instance (this was the version installed with Visual Studio 2010), accessed via OleDB.

This list of database providers is to be extended in the future. Any feedback is welcome!

Numbers are expressed in rows/second (or objects/second). This benchmark was compiled with Delphi 7, so newer compilers may give even better results, with in-lining and advanced optimizations.

Note that these tests are not about the relative speed of each database engine, but reflect the current status of the integration of several DB libraries within the mORMot database access.

Purpose here is not to say that one library or database is better or faster than another, but publish a snapshot of current mORMot persistence layer abilities.

In this timing, we do not benchmark only the "pure" SQL/DB layer access (SynDB units), but the whole Client-Server ORM of our framework: process below includes read and write RTTI access of a TSQLRecord, JSON marshaling, CRUD/REST routing, virtual cross-database layer, SQL on-the-fly translation. We just bypass the communication layer, since TSQLRestClient and TSQLRestServer are run in-process, in the same thread - as a TSQLRestServerDB instance. So you have here some raw performance testimony of our framework's ORM and RESTful core.

You can compile the "15 - External DB performance" supplied sample code, and run the very same benchmark on your own configuration.

Continue reading...

2013, Wednesday October 9

Good old object is not to be deprecated - it is the future

Yes, I know this article title is a huge moment of trolling for most Delphi developer.
But object could be legend... - wait for it - ... dary!

You perhaps already noticed by several blog posts here that I still like the good old (and deprecated) object type, in addition to the common heap-allocated class type.
Plain record with methods does not match the object-oriented approach of object, since it does not feature inheritance.

When you take a look at modern strongly-typed languages, targeting concurrent programming (you know, multi-thread/multi-core execution), you will see that the objects may be allocated in several ways, to facilitate execution flow.

The Rust language for instance is pretty interesting. It has optional task-local Garbage Collection and safe pointer types with region analysis.

To some extent, it is very similar to what object allows in the Delphi world, and why I'm still using/loving it!

Continue reading...

2013, Tuesday September 10

Thread-safety of mORMot

We tried to make mORMot at the same time fast and safe, and able to scale with the best possible performance on the hardware it runs on.
Multi-threading is the key to better usage of modern multi-core CPUs, and also client responsiveness.

As a result, on the Server side, our framework was designed to be thread-safe.

On typical production use, the mORMot HTTP server will run on its own optimized thread pool, then call the TSQLRestServer.URI method. This method is therefore expected to be thread-safe, e.g. from the TSQLHttpServer. Request method. Thanks to the RESTful approach of our framework, this method is the only one which is expected to be thread-safe, since it is the single entry point of the whole server. This KISS design ensure better test coverage.

Let us see now how this works, and publish some benchmarks to test how efficient it has been implemented.

Continue reading...

2013, Wednesday July 24

Tempering Garbage Collection

I'm currently fighting against out of memory errors on an heavy-loaded Java server.

If only it had been implemented in Delphi and mORMot!
But at this time, the mORMot was still in its burrow. :)
Copy-On-Write and a good heap manager can do wonders of stability.

Here are some thoughts about Garbage Collector, and how to temper their limitations.
They may apply to both the JVM and the .Net runtime, by the way.

Continue reading...

2013, Thursday July 4

Let mORmot's applications be even more responsive

In mORmot applications, all the client communication is executed by default in the current thread, i.e. the main thread for a typical GUI application.
This may become an issue in some reported environments.

Since all communication is performed in blocking mode, if the remote request takes long to process (due to a bad/slow network, or a long server-side action), the application may become unresponsive, from the end-user experience.
Even Windows may be complaining about a "non responsive application", and may propose to kill the process, which is far away from an expected behavior.

In order to properly interacts with the user, a OnIdle property has been defined in TSQLRestClientURI, and will change the way communication is handled.
If a callback event is defined, all client communication will be processed in a background thread, and the current thread (probably the main UI thread) will wait for the request to be performed in the background, running the OnIdle callback in loop in the while.

Continue reading...

2013, Sunday June 16

FireDAC / AnyDAC support for mORMot

Our SynDB classes feature now FireDAC / AnyDAC access, with full speed!

Up to now, only UniDAC, BDE or ZEOS components were available as source, but we just added FireDAC / AnyDAC.

FireDAC is an unique set of Universal Data Access Components for developing cross platform database applications on Delphi. This was in fact a third-party component set, bought by Embarcadero to DA-SOFT Technologies (formerly known as AnyDAC), and included with several editions of Delphi XE3 and up. This is the new official platform for high-speed database development in Delphi, in favor to the now deprecated DBExpress.

Our integration within SynDB.pas units and the mORMot persistence layer has been tuned. For instance, you can have direct access to high-speed FireDAC Array DML feature, via the ORM batch process, via so-called array binding.

Continue reading...

2013, Friday June 14

SQLite3 performance in Exclusive file locking mode

As stated in previous blog articles, the default SQlite3 write speed is quite slow, when running on a normal hard drive. By default, the engine will pause after issuing a OS-level write command. This guarantees that the data is written to the disk, and features the ACID properties of the database engine.

ACID is an acronym for "Atomicity Consistency Isolation Durability" properties, which guarantee that database transactions are processed reliably: for instance, in case of a power loss or hardware failure, the data will be saved on disk in a consistent way, with no potential loss of data.

In SQLite3, ACID is implemented by two means at file level:
- Synchronous writing: it means that the engine will wait for any written content to be flushed to disk before processing the next request;
- File locking: it means that the database file is locked for exclusive use during writing, allowing several processes to access the same database file concurrently.

Changing these default settings can ensure much better writing performance.

We just added direct File locking tuning.
It appears that defining exclusive access mode is able to increase the performance a lot, in both reading and writing speed.

Here are some new benchmarks and data, extracted from the updated SAD documentation.

Continue reading...

2013, Friday May 24

REGEXP operator for SQLite3

Our SQLite3 engine can now use regular expression within its SQL queries, by enabling the REGEXP operator in addition to standard SQL operators (= == != <> IS IN LIKE GLOB MATCH). It will use the Open Source PCRE library (bounded since Delphi XE, or available as a separate download) to perform the queries.

It will enable advanced searches within text columns and our objects, when used as a WHERE clause of our mORMot's ORM.

Continue reading...

2013, Tuesday May 21

Performance issue in NextGen ARC model

Apart from being very slow during compilation, the Delphi NextGen compiler introduced a new memory model, named ARC.

We already spoke about ARC years ago, so please refer to our corresponding blog article for further information, especially about how Apple did introduce ARC to iOS instead of the Garbage Collector model.

About how ARC is to be used in the NextGen compiler, take a look at Marco's blog article, and its linked resources.

But the ARC model, as implemented by Embarcadero, has at least one huge performance issue, in the way weak references, and zeroing weak pointers have been implemented.
I do not speak about the general slow down introduced during every class/record initialization/finalization, which is noticeable, but not a big concern.

If you look at XE4 internals, you will discover a disappointing global lock introduced in the RTL.

Continue reading...

2013, Sunday May 19

"The shorter code, the better?"

One quick Sunday post, from a comment I wrote in a blog article.

I'm always wondering why a lot of programmers tend to implicitly assume that "the shorter source code, the better".

It is true when it means that with proper code refactoring, making small objects with dedicated methods, the code of your methods will be smaller.
It is true when you do not like to write as a "Copy & Paste" coder, without searching to put common code in shared places.

But is it true at the language level?
I mean, is it just because your ARC or GC model allow you not to manage the object memory, that it is always better?

Just some ideas...

Continue reading...

- page 3 of 6 -