Synopse

To content | To menu | To search

Tag - Rest

Entries feed

2014, Friday November 14

BREAKING CHANGE - TSQLRecord.ID primary key changed to TID: Int64

Up to now, the TSQLRecord.ID property was defined in mORMot.pas as a plain PtrInt/NativeInt (i.e. Integer under Win32), since it was type-cast as pointer for TSQLRecord published properties.
We introduced a new TID type, so that the ORM primary key would now be defined as Int64.

All the framework ORM process relies on the TSQLRecord class.
This abstract TSQLRecord class features a lot of built-in methods, convenient to do most of the ORM process in a generic way, at record level.

It first defines a primary key field, defined as ID: TID, i.e. as Int64 in mORMot.pas:

type
  TID = type Int64;
  ...
  TSQLRecord = class(TObject)
  ...
    property ID: TID read GetID write fID;
  ...

In fact, our ORM relies now on a Int64 primary key, matching the SQLite3 ID/RowID primary key.
This primary key will be used as RESTful resource identifier, for all CRUD operations.

Continue reading...

2014, Saturday October 25

Are "Micro Services" the proper way of writing SOA?

I just wanted to share a great article by Martin Fowler, about Micro Services.

IMHO such "Micro Services" are the proper way of defining a SOA project, following SOLID principles.
If we follow the "Single Responsibility" principle, we will define small uncoupled services, which do one single task. This will fulfill the "Interface Segregation" principle, and since we rely on abstractions, the "Liskov Substitution" will also apply. By definition, the SOA catalog/publish mechanism will perform "Dependency Inversion".
All this sounds just like the definition of "Micro Services".

Worth reading, and a nice illustration of how to build mORMot applications!

2014, Saturday August 16

Will WebSocket replace HTTP? Does it scale?

You certainly noticed that WebSocket is the current trendy flavor for any modern web framework.
But does it scale? Would it replace HTTP/REST?
There is a feature request ticket about them for mORMot, so here are some thoughts - matter of debate, of course!
I started all this by answering a StackOverflow question, in which the actual answers were not accurate enough, to my opinion.

From my point of view, Websocket - as a protocol - is some kind of monster.

You start a HTTP stateless connection, then switch to WebSocket mode which releases the TCP/IP dual-direction layer, then you may switch later on back to HTTP...
It reminds me some kind of monstrosity, just like encapsulating everything over HTTP, using XML messages... Just to bypass the security barriers... Just breaking the OSI layered model...
It reminds me the fact that our mobile phone data providers do not use broadcasting for streaming audio and video, but regular Internet HTTP servers, so the mobile phone data bandwidth is just wasted when a sport event occurs: every single smart phone has its own connection to the server, and the same video is transmitted in parallel, saturating the single communication channel... Smart phones are not so smart, aren't they?

WebSocket sounds like a clever way to circumvent a limitation...
But why not use a dedicated layer?
I hope HTTP 2.0 would allow pushing information from the server, as part of the standard... and in one decade, we probably will see WebSocket as a deprecated technology.
You have been warned. Do not invest too much in WebSockets..

OK. Back to our existential questions...
First of all, does the WebSocket protocol scale?
Today, any modern single server is able to server millions of clients at once.
Its HTTP server software has just to be is Event-Driven (IOCP) oriented (we are not in the old Apache's one connection = one thread/process equation any more).
Even the HTTP server built in Windows (http.sys - which is used in mORMot) is IOCP oriented and very efficient (running in kernel mode).
From this point of view, there won't be a lot of difference at scaling between WebSocket and a regular HTTP connection. One TCP/IP connection uses a little resource (much less than a thread), and modern OS are optimized for handling a lot of concurrent connections: WebSocket and HTTP are just OSI 7 application layer protocols, inheriting from this TCP/IP specifications.

But, from experiment, I've seen two main problems with WebSocket:

  1. It does not support CDN;
  2. It has potential security issues.

Continue reading...

2014, Monday August 11

Cross-Platform mORMot Clients - Smart Mobile Studio

Current version of the main framework units target only Win32 and Win64 systems.

It allows to make easy self-hosting of mORMot servers for local business applications in any corporation, or pay cheap hosting in the Cloud, since mORMot CPU and RAM expectations are much lower than a regular IIS-WCF-MSSQL-.Net stack.
But in a Service-Oriented Architecture (SOA), you would probably need to create clients for platforms outside the Windows world, especially mobile devices.

A set of cross-platform client units is therefore available in the CrossPlatform sub-folder of the source code repository. It allows writing any client in modern object pascal language, for:

  • Any version of Delphi, on any platform (Mac OSX, or any mobile supported devices);
  • FreePascal Compiler 2.7.1;
  • Smart Mobile Studio 2.1, to create AJAX or mobile applications (via PhoneGap, if needed).

This series of articles will introduce you to mORMot's Cross-Platform abilities:

Any feedback is welcome in our forum, as usual!

Continue reading...

Cross-Platform mORMot Clients - Delphi / FreePascal

Current version of the main framework units target only Win32 and Win64 systems.

It allows to make easy self-hosting of mORMot servers for local business applications in any corporation, or pay cheap hosting in the Cloud, since mORMot CPU and RAM expectations are much lower than a regular IIS-WCF-MSSQL-.Net stack.
But in a Service-Oriented Architecture (SOA), you would probably need to create clients for platforms outside the Windows world, especially mobile devices.

A set of cross-platform client units is therefore available in the CrossPlatform sub-folder of the source code repository. It allows writing any client in modern object pascal language, for:

  • Any version of Delphi, on any platform (Mac OSX, or any mobile supported devices);
  • FreePascal Compiler 2.7.1;
  • Smart Mobile Studio 2.1, to create AJAX or mobile applications (via PhoneGap, if needed).

This series of articles will introduce you to mORMot's Cross-Platform abilities:

Any feedback is welcome in our forum, as usual!

Continue reading...

Cross-Platform mORMot Clients - Generating Code Wrappers

Current version of the main framework units target only Win32 and Win64 systems.

It allows to make easy self-hosting of mORMot servers for local business applications in any corporation, or pay cheap hosting in the Cloud, since mORMot CPU and RAM expectations are much lower than a regular IIS-WCF-MSSQL-.Net stack.
But in a Service-Oriented Architecture (SOA), you would probably need to create clients for platforms outside the Windows world, especially mobile devices.

A set of cross-platform client units is therefore available in the CrossPlatform sub-folder of the source code repository. It allows writing any client in modern object pascal language, for:

  • Any version of Delphi, on any platform (Mac OSX, or any mobile supported devices);
  • FreePascal Compiler 2.7.1;
  • Smart Mobile Studio 2.1, to create AJAX or mobile applications (via PhoneGap, if needed).

This series of articles will introduce you to mORMot's Cross-Platform abilities:

Any feedback is welcome in our forum, as usual!

Continue reading...

Cross-Platform mORMot Clients - Units and Platforms

Current version of the main framework units target only Win32 and Win64 systems.

It allows to make easy self-hosting of mORMot servers for local business applications in any corporation, or pay cheap hosting in the Cloud, since mORMot CPU and RAM expectations are much lower than a regular IIS-WCF-MSSQL-.Net stack.
But in a Service-Oriented Architecture (SOA), you would probably need to create clients for platforms outside the Windows world, especially mobile devices.

A set of cross-platform client units is therefore available in the CrossPlatform sub-folder of the source code repository. It allows writing any client in modern object pascal language, for:

  • Any version of Delphi, on any platform (Mac OSX, or any mobile supported devices);
  • FreePascal Compiler 2.7.1;
  • Smart Mobile Studio 2.1, to create AJAX or mobile applications (via PhoneGap, if needed).

This series of articles will introduce you to mORMot's Cross-Platform abilities:

Any feedback is welcome in our forum, as usual!

Continue reading...

2014, Tuesday August 5

Returning content as XML

By default, interface-based services of a mORMot server will always return a JSON array (or a JSON object, if TServiceFactoryServer.ResultAsJSONObject is true).
With some kind of clients (e.g. if they are made by a third party), it could be useful to return XML content instead.

Your mORMot server is able to let its interface-based services return XML context instead, or in addition to the default JSON format.

Continue reading...

2014, Sunday June 22

Audit-trail for ORM change tracking

Since most CRUD operations are centered within the scope of our mORMot server, we implemented in the ORM an integrated mean of tracking changes (aka Audit Trail) of any TSQLRecord.
In short, our ORM is transformed into a time-machine, just like the good old DeLorean!

Keeping a track of the history of business objects is one very common need for software modeling, and a must-have for any accurate data modeling, like Domain-Driven Design.
By default, as expected by the OOP model, any change to an object will forget any previous state of this object. But thanks to mORMot's exclusive change-tracking feature, you can persist the history of your objects.

Enabling audit-trail

By default, change-tracking feature will be disabled, saving performance and disk use.
But you can enable change tracking for any class, by calling the following method, on server side:

 aServer.TrackChanges([TSQLInvoice]);

This single line will let aServer: TSQLRestServer monitor all CRUD operations, and store all changes of the TSQLInvoice table within a TSQLRecordHistory table.

Continue reading...

2014, Friday May 30

Software Design, Brook, mORMot, RAD, SOLID and OOP

We got a very instructive discussion in our forums, with Silvio, the maintainer of the Brook Framework.
Brook is a nice framework for writing web applications using Free Pascal.

It comes to my mind what mORMot can offer.
We did not want to compare the features or say that one framework is better than the other, but it appeared to me that a lot of object pascal programmers are tied to 20th century programming model.

In fact, to embrace the potentials of mORMot, you need to switch your mind, and enhanced your RAD and OOP background, into 21th century SOLID model.

Continue reading...

2014, Friday May 9

BREAKING CHANGE: TSQLRestServerStatic* classes are now renamed as TSQLRestStorage*

From the beginning, server-side storage tables which were not store in a SQLite3 database were implemented via some classes inheriting from TSQLRestServerStatic.
This TSQLRestServerStatic was inheriting from TSQLRestServer
, which did not make much sense (but was made for laziness years ago, if I remember well).

Now, a new TSQLRestStorage class, directly inheriting from TSQLRest, is used for per-table storage.
This huge code refactoring results in a much cleaner design, and will enhance code maintainability.
Documentation has been updated to reflect the changes.

Note that this won't change anything when using the framework (but the new class names): it is an implementation detail, which had to be fixed.

Continue reading...

2014, Wednesday May 7

MongoDB + mORMot benchmark

Here are some benchmark charts about MongoDB integration in mORMot's ORM.

MongoDB appears as a serious competitor to SQL databases, with the potential benefit of horizontal scaling and installation/administration ease - performance is very high, and its document-based storage fits perfectly with mORMot's advanced ORM features like Shared nothing architecture (or sharding).

Continue reading...

MongoDB + mORMot ORM = ODM

MongoDB (from "humongous") is a cross-platform document-oriented database system, and certainly the best known NoSQL database.
According to http://db-engines.com in April 2014, MongoDB is in 5th place of the most popular types of database management systems, and first place for NoSQL database management systems.
Our mORMot gives premium access to this database, featuring full NoSQL and Object-Document Mapping (ODM) abilities to the framework.

Integration is made at two levels:

  • Direct low-level access to the MongoDB server, in the SynMongoDB.pas unit;
  • Close integration with our ORM (which becomes defacto an ODM), in the mORMotMongoDB.pas unit.

MongoDB eschews the traditional table-based relational database structure in favor of JSON-like documents with dynamic schemas (MongoDB calls the format BSON), which matches perfectly mORMot's RESTful approach.

This second article will focus on integration of MongoDB with our ORM.

Continue reading...

Direct MongoDB database access

MongoDB (from "humongous") is a cross-platform document-oriented database system, and certainly the best known NoSQL database.
According to http://db-engines.com in April 2014, MongoDB is in 5th place of the most popular types of database management systems, and first place for NoSQL database management systems.
Our mORMot framework gives premium access to this database, featuring full NoSQL and Object-Document Mapping (ODM) abilities to the framework.

Integration is made at two levels:

  • Direct low-level access to the MongoDB server, in the SynMongoDB.pas unit;
  • Close integration with our ORM (which becomes defacto an ODM), in the mORMotMongoDB.pas unit.

MongoDB eschews the traditional table-based relational database structure in favor of JSON-like documents with dynamic schemas (MongoDB calls the format BSON), which matches perfectly mORMot's RESTful approach.

In this first article, we will detail direct low-level access to the MongoDB server, via the SynMongoDB.pas unit.

Continue reading...

2014, Thursday March 13

ORM mapping class fields to external table columns

When working with an ORM, you have mainly two possibilites:

  1. Start from scratch, i.e. write your classes and let the ORM creates all the database structure - it is also named "code-first";
  2. From an existing database, you define in your model how your classes map the existing database structure - this is "database-first".

We have just finalized ORM external table field mapping in mORMot, using e.g.
aModel.Props[aExternalClass].ExternalDB.MapField(..)
See this last commit.

So you can write e.g.

fProperties := TSQLDBSQLite3ConnectionProperties.Create(
  SQLITE_MEMORY_DATABASE_NAME,'','','');
VirtualTableExternalRegister(fExternalModel,
  TSQLRecordPeopleExt,fProperties,'PeopleExternal');
fExternalModel.Props[TSQLRecordPeopleExt].ExternalDB.
  MapField('ID','Key').
  MapField('YearOfDeath','YOD');

Then you use your TSQLRecordPeopleExt table as usual from Delphi code, with ID and YearOfDeath fields:

  • The "internal" TSQLRecord class will be stored within the PeopleExternal external table;
  • The "internal" TSQLRecord.ID field will be an external "Key: INTEGER" column;
  • The "internal" TSQLRecord.YearOfDeath field will be an external "YOD: BIGINT" column;
  • Other internal published properties will be mapped by default with the same name to external column.

Continue reading...

2014, Friday March 7

Support of MySQL, DB2 and PostgreSQL

We just tested, benchmarked and validated Oracle MySQL, IBM DB2 and PostgreSQL support for our SynDB database classes and the mORMot's ORM core.
This article will also show all updated results, including our newly introduced multi-value INSERT statement generations, which speed up a lot BATCH insertion.

Stay tuned!

Purpose here is not to say that one library or database is better or faster than another, but publish a snapshot of mORMot persistence layer abilities, depending on each access library.

In this timing, we do not benchmark only the "pure" SQL/DB layer access (SynDB units), but the whole Client-Server ORM of our framework.

Process below includes all aspects of our ORM:

  • Access via high level CRUD methods (Add/Update/Delete/Retrieve, either per-object or in BATCH mode);
  • Read and write access of TSQLRecord instances, via optimized RTTI;
  • JSON marshaling of all values (ready to be transmitted over a network);
  • REST routing, with security, logging and statistic;
  • Virtual cross-database layer using its SQLite3 kernel;
  • SQL on-the-fly generation and translation (in virtual mode);
  • Access to the database engines via several libraries or providers.

In those tests, we just bypassed the communication layer, since TSQLRestClient and TSQLRestServer are run in-process, in the same thread - as a TSQLRestServerDB instance. So you have here some raw performance testimony of our framework's ORM and RESTful core, and may expect good scaling abilities when running on high-end hardware, over a network.

On a recent notebook computer (Core i7 and SSD drive), depending on the back-end database interfaced, mORMot excels in speed, as will show the following benchmark:

  • You can persist up to 570,000 objects per second, or retrieve 870,000 objects per second (for our pure Delphi in-memory engine);
  • When data is retrieved from server or client 38, you can read more than 900,000 objects per second, whatever the database back-end is;
  • With a high-performance database like Oracle, and our direct access classes, you can write 70,000 (via array binding) and read 160,000 objects per second, over a 100 MB network;
  • When using alternate database access libraries (e.g. Zeos, or DB.pas based classes), speed is lower (even if comparable for DB2, MS SQL, PostgreSQL, MySQL) but still enough for most work, due to some optimizations in the mORMot code (e.g. caching of prepared statements, SQL multi-values insertion, direct export to/from JSON, SQlite3 virtual mode design, avoid most temporary memory allocation...).

Difficult to find a faster ORM, I suspect.

Continue reading...

2014, Friday January 10

RESTful mORMot

Our Synopse mORMot Framework was designed in accordance with Fielding's REST architectural style without using HTTP and without interacting with the World Wide Web.
Such Systems which follow REST principles are often referred to as "RESTful".

Optionally, the Framework is able to serve standard HTTP/1.1 pages over the Internet (by using the mORMotHttpClient / mORMotHttpServer units and the TSQLHttpServer and TSQLHttpClient classes), in an embedded low resource and fast HTTP server.

Continue reading...

REpresentational State Transfer (REST)

Representational state transfer (REST) is a style of software architecture for distributed hypermedia systems such as the World Wide Web.
As such, it is not just a method for building "web services". The terms "representational state transfer" and "REST" were introduced in 2000 in the doctoral dissertation of Roy Fielding, one of the principal authors of the Hypertext Transfer Protocol (HTTP) specification, on which the whole Internet rely.

 

There are 5 basic fundamentals of web which are leveraged to create REST services:

  1. Everything is a Resource;
  2. Every Resource is Identified by a Unique Identifier;
  3. Use Simple and Uniform Interfaces;
  4. Communication is Done by Representation;
  5. Every Request is Stateless.

Continue reading...

2014, Tuesday January 7

Some enhancements to REST routing of interface-based services

We have just committed some enhancements to interface-based service process.

TSQLRestRoutingREST will now recognize several URI schemes, like new  root/Calculator/Add?n1=1&n2=2 alternative could be pretty convenient to be consumed from some REST clients.

Please find here a documentation update.

Continue reading...

2014, Sunday January 5

AES encryption over HTTP

In addition to regular HTTPS flow encryption, which is not easy to setup due to the needed certificates, mORMot proposes a proprietary encryption scheme. It is based on SHA-256 and AES-256/CTR algorithms, so is known to be secure.

You do not need to setup anything on the server or the client configuration, just run the TSQLHttpClient and TSQLHttpServer classes with the corresponding parameters.

Continue reading...

- page 1 of 4