

This is an extract from the SAD 1.18 pdf, as rendered on 04/28/2014
Please download the latest version to get an updated revision

Written by Arnaud Bouchez
© 2014 Synopse htpp://synopse.info

SynMustache
and the Mustache Logic-less Template Engine

Synopse mORMot Framework
SynMustache library

 SynMustache Page 2 of 20

7.3.2. Web clients

7.3.2.1. Mustache template engine

Mustache - see http://mustache.github.io.. - is a well-known logic-less template engine.
There is plenty of Open Source implementations around (including in JavaScript, which can be very
convenient for AJAX applications on client side, for instance). For mORMot, we created the first pure
Delphi implementation of it, with a perfect integration with other bricks of the framework.

Generally speaking, a Template system can be used to separate output formatting specifications,
which govern the appearance and location of output text and data elements, from the executable
logic which prepares the data and makes decisions about what appears in the output.

Most template systems (e.g. PHP, smarty, Razor...) feature in fact a full scripting engine within the
template content. It allows powerful constructs like variable assignment or conditional statements in
the middle of the HTML content. It makes it easy to modify the look of an application within the
template system exclusively, without having to modify any of the underlying "application logic". They
do so, however, at the cost of separation, turning the templates themselves into part of the
application logic.

Mustache inherits from Google's ctemplate library, and is used in many famous applications, including
the "main" Google web search, or the Twitter web site.
The Mustache template system leans strongly towards preserving the separation of logic and
presentation, therefore ensures a perfect MVC - Model-View-Controller - design, and ready to
consume SOA services.

Mustache is intentionally constrained in the features it supports and, as a result, applications tend to
require quite a bit of code to instantiate a template: all the application logic will be defined within the
Controller code, not in the View source. This may not be to everybody's tastes. However, while this
design limits the power of the template language, it does not limit the power or flexibility of the
template system. This system supports arbitrarily complex text formatting.

Finally, Mustache is designed with an eye towards efficiency. Template instantiation is very quick, with
an eye towards minimizing both memory use and memory fragmentation. As a result, it sounds like a
perfect template system for our mORMot framework.

http://mustache.github.io/

Synopse mORMot Framework
SynMustache library

 SynMustache Page 3 of 20

7.3.2.2. Mustache principles

There are two main parts to the Mustache template system:

- Templates (which are plain text files);
- Data dictionaries (aka Context).

For instance, given the following template:

<h1>{{header}}</h1>

{{#items}}
 {{#first}}
 {{name}}
 {{/first}}
 {{#link}}
 {{name}}
 {{/link}}
{{/items}}

{{#empty}}
 <p>The list is empty.</p>
{{/empty}}

and the following data context:

{
 "header": "Colors",
 "items": [
 {"name": "red", "first": true, "url": "#Red"},
 {"name": "green", "link": true, "url": "#Green"},
 {"name": "blue", "link": true, "url": "#Blue"}
],
 "empty": true
}

The Mustache engine will render this data as such:

<h1>Colors</h1>
red
green
blue
<p>The list is empty.</p>

In fact, you did not see any "if" nor "for" loop in the template, but Mustache conventions make it
easy to render the supplied data as the expected HTML output. It is up to the MVC Controller to
render the data as expected by the template, e.g. for formatting dates or currency values.

Synopse mORMot Framework
SynMustache library

 SynMustache Page 4 of 20

7.3.2.3. Mustache templates

The Mustache template logic-less language has five types of tags:

- Variables;
- Sections;
- Inverted Sections;
- Comments;
- Partials.

All those tags will be identified with mustaches, i.e. {{...}}. Anything found in a template of this
form is interpreted as a template marker. All other text is considered formatting text and is output
verbatim at template expansion time.

Marker Description

{{variable}}
The variable name will be searched recursively within the current context
(possibly with dotted names), and, if found, will be written as escaped HTML.
If there is no such key, nothing will be rendered.

{{{variable}}}
{{& variable}}

The variable name will be searched recursively within the current context,
and, if found, will be written directly, without any HTML escape.
If there is no such key, nothing will be rendered.

{{#section}}
...
{{/section}}

Defines a block of text, aka section, which will be rendered depending of the
section variable value, as searched in the current context:
- If section equals false or is an empty list [], the whole block won't be
rendered;
- If section is non-false but not a list, it will be used as the context for a single
rendering of the block;
- If section is a non-empty list, the text in the block will be rendered once for
each item in the list - the context of the block will be set to the current item for
each iteration.

{{^section}}
...
{{/section}}

Defines a block of text, aka inverted section, which will be rendered depending
of the section variable inverted value, as searched in the current context:
- If section equals false or is an empty list, the whole block will be rendered;
- If section is non-false or a non-empty list, it won't be rendered.

{{! comment}} The comment text will just be ignored.

{{>partial}}
The partial name will be searched within the registered partials list, then will
be executed at run-time (so recursive partials are possible), with the current
execution context.

{{=...=}}
The delimiters (i.e. by default {{...}}) will be replaced by the specified
characters (may be convenient when double-braces may appear in the text).

Synopse mORMot Framework
SynMustache library

 SynMustache Page 5 of 20

In addition to those standard markers, the mORMot implementation of Mustache features:

Marker Description

{{.}}
This pseudo-variable refers to the context object itself instead of one of its
members. This is particularly useful when iterating over lists.

{{-index}}
This pseudo-variable returns the current item number when iterating over lists,
starting counting at 1

{{#-first}}
...
{{/-first}}

Defines a block of text (pseudo-section), which will be rendered - or not
rendered for inverted {{^-first}} - for the first item when iterating over lists

{{#-last}}
...
{{/-last}}

Defines a block of text (pseudo-section), which will be rendered - or not
rendered for inverted {{^-last}} - for the last item when iterating over lists

{{#-odd}}
...
{{/-odd}}

Defines a block of text (pseudo-section), which will be rendered - or not
rendered for inverted {{^-odd}} - for the odd item number when iterating
over lists: it can be very usefull e.g. to display a list with alternating row colors

{{<partial}}
...
{{/partial}}

Defines an in-lined partial - to be called later via {{>partial}} - within the
scope of the current template

{{"some text}}
This pseudo-variable will supply the given text to a callback, which will for
instance transform its content (e.g. translate it), before writing it to the output

This set of markers will allow to easily write any kind of content, without any explicit logic nor nested
code. As a major benefit, the template content could be edited and verified without the need of any
Mustache compiler, since all those {{...}} markers will identify very clearly the resulting layout.

Synopse mORMot Framework
SynMustache library

 SynMustache Page 6 of 20

7.3.2.3.1. Variables

A typical Mustache template:

Hello {{name}}
You have just won {{value}} dollars!
Well, {{taxed_value}} dollars, after taxes.

Given the following hash:

{
 "name": "Chris",
 "value": 10000,
 "taxed_value": 6000
}

Will produce the following:

Hello Chris
You have just won 10000 dollars!
Well, 6000 dollars, after taxes.

You can note that {{variable}} tags are escaped for HTML by default. This is a mandatory security
feature. In fact, all web applications which create HTML documents can be vulnerable to Cross-Site-
Scripting (XSS) attacks unless data inserted into a template is appropriately sanitized and/or escaped.
With Mustache, this is done by default. Of course, you can override it and force to not-escape the
value, using {{{variable}}} or {{& variable}}.

For instance:

Template Context Output

* {{name}}
* {{age}}
* {{company}}
* {{{company}}}

{
 "name": "Chris",
 "company": "GitHub"
}

* Chris
*
* GitHub
* GitHub

Variables resolve names within the current context with an optional dotted syntax, for instance:

Template Context Output

* {{people.name}}
* {{people.age}}
* {{people.company}}
* {{{people.company}}}

{
 "people": {
 "name":"Chris",
 "company":"GitHub"
 }
}

* Chris
*
* GitHub
* GitHub

Synopse mORMot Framework
SynMustache library

 SynMustache Page 7 of 20

7.3.2.3.2. Sections

Sections render blocks of text one or more times, depending on the value of the key in the current
context.

In our "wining template" above, what happen if we do want to hide the tax details?
In most script languages, we may write an if ... block within the template. This is what Mustache
avoids. So we define a section, which will be rendered on need.

The template becomes:

Hello {{name}}
You have just won {{value}} dollars!
{{#in_ca}}
Well, {{taxed_value}} dollars, after taxes.
{{/in_ca}}

Here, we created a new section, named in_ca.

Given the hash value of in_ca (and its presence), the section will be rendered, or not:

Context Output

{
 "name": "Chris",
 "value": 10000,
 "taxed_value": 6000,
 "in_ca": true
}

Hello Chris
You have just won 10000 dollars!
Well, 6000 dollars, after taxes.

{
 "name": "Chris",
 "value": 10000,
 "taxed_value": 6000,
 "in_ca": false
}

Hello Chris
You have just won 10000 dollars!

{
 "name": "Chris",
 "value": 10000,
 "taxed_value": 6000
}

Hello Chris
You have just won 10000 dollars!

Sections also change the context of its inner block. It means that the section variable content becomes
the top-most context which will be used to identify any supplied variable key.

Synopse mORMot Framework
SynMustache library

 SynMustache Page 8 of 20

Therefore, the following context will be perfectly valid: we can define taxed_value as a member of
in_ca, and it will be rendered directly, since it is part of the new context.

Context Output

{
 "name": "Chris",
 "value": 10000,
 "in_ca": {
 "taxed_value": 6000
 }
}

Hello Chris
You have just won 10000 dollars!
Well, 6000 dollars, after taxes.

{
 "name": "Chris",
 "value": 10000,
 "taxed_value": 6000
}

Hello Chris
You have just won 10000 dollars!

{
 "name": "Chris",
 "value": 10000,
 "taxed_value": 3000,
 "in_ca": {
 "taxed_value": 6000
 }
}

Hello Chris
You have just won 10000 dollars!
Well, 6000 dollars, after taxes.

In the latest context above, there are two taxed_value variables. The engine will use the one defined
by the context in the in_ca section, i.e. in_ca.taxed_value; the one defined at the root context level
(which equals 3000) is just ignored.

If the variable pointed by the section name is a list, the text in the block will be rendered once for each
item in the list. The context of the block will be set to the current item for each iteration.
In this way we can loop over collections. Mustache allows any depth of nested loops (e.g. any level of
master/details information).

Template Context Output

{{#repo}}
 {{name}}
{{/repo}}

{
 "repo": [
 "name": "resque" ,
 "name": "hub" ,
 "name": "rip"
]
}

resque
hub
rip

{{#repo}}
 {{.}}
{{/repo}}

{
 "repo":
 ["resque", "hub", "rip"]
}

resque
hub
rip

The latest template makes use of the {{.}} pseudo-variable, which allows to render the current item
of the list.

Synopse mORMot Framework
SynMustache library

 SynMustache Page 9 of 20

7.3.2.3.3. Inverted Sections

An inverted section begins with a caret (^) and ends as a standard (non-inverted) section. They may
render text once, based on the inverse value of the key. That is, the text block will be rendered if the
key doesn't exist, is false, or is an empty list.

Inverted sections are usually defined after a standard section, to render some message in case no
information will be written in the non-inverted section:

Template Context Output

{{#repo}}
 {{.}}
{{/repo}}
{{^repo}}
No repos :(
{{/repo}}

{
 "repo":
 []
}

No repos :(

Synopse mORMot Framework
SynMustache library

 SynMustache Page 10 of 20

7.3.2.3.4. Partials

Partials are some kind of external sub-templates which can be included within a main template, for
instance to follow the same rendering at several places. Just like functions in code, they do ease
template maintainability and spare development time.

Partials are rendered at runtime (as opposed to compile time), so recursive partials are possible. Just
avoid infinite loops. They also inherit the calling context, so can easily be re-used within a list section,
or together with plain variables.

In practice, partials shall be supplied together with the data context - they could be seen as "template
context".

For example, this "main" template uses a {{> user}} partial:

<h2>Names</h2>
{{#names}}
 {{> user}}
{{/names}}

With the following template registered as "user":

{{name}}

Can be thought of as a single, expanded template:

<h2>Names</h2>
{{#names}}
 {{name}}
{{/names}}

In mORMot's implementations, you can also create some internal partials, defined as {{<partial}}
... {{/partial}} pseudo-sections. It may decrease the need of maintaining multiple template files,
and refine the rendering layout.

For instance, the previous template may be defined at once:

<h2>Names</h2>
{{#names}}
 {{>user}}
{{/names}}

{{<user}}
{{name}}
{{/user}}

The same file will define both the partial and the main template. Note that we defined the internal
partial after the main template, but we may have defined it anywhere in the main template logic:
internal partials definitions are ignored when rendering the main template, just like comments.

Synopse mORMot Framework
SynMustache library

 SynMustache Page 11 of 20

7.3.2.4. SynMustache unit

Part of our mORMot framework, we implemented an optimized Mustache template engine in the
SynMustache unit:

- It is the first Delphi implementation of Mustache;
- It has a separate parser and renderer (so you can compile your templates ahead of time);
- The parser features a shared cache of compiled templates;
- It passes all official Mustache specification tests, as defined at http://github.com/mustache/spec.. -

including all weird whitespace process;
- External partials can be supplied as TSynMustachePartials dictionaries;
- {{.}}, {{-index}} and {{"some text}} pseudo-variables were added to the standard Mustache

syntax;
- {{#-first}}, {{#-last}} and {{#-odd}} pseudo-sections were added to the standard Mustache

syntax;
- Internal partials can be defined via {{<partial}} - also a nice addition to the standard Mustache

syntax;
- It allows the data context to be supplied as JSON or our TDocVariant custom variant type;
- Almost no memory allocation is performed during the rendering;
- It is natively UTF-8, from the ground up, with optimized conversion of any string data;
- Performance has been tuned and grounded in SynCommons's optimized code;
- Each parsed template is thread-safe and re-entrant;
- It follows the Open/Close principle, so that any aspect of the process can be customized and

extended (e.g. for any kind of data context);
- It is perfectly integrated with the other bricks of our mORMot framework, ready to implement

dynamic web sites with true Model-View-Controller design, and full separation of concerns in the
views written in Mustache, the controllers being e.g. interface-based services;

- API is flexible and easy to use.

http://github.com/mustache/spec

Synopse mORMot Framework
SynMustache library

 SynMustache Page 12 of 20

7.3.2.4.1. Variables

Now, let's see some code.
First, we define our needed variables:

var mustache: TSynMustache;
 doc: variant;

In order to parse a template, you just need to call:

 mustache := TSynMustache.Parse(
 'Hello {{name}}'#13#10'You have just won {{value}} dollars!');

It will return a compiled instance of the template.
The Parse() class method will use the shared cache, so you won't need to release the mustache
instance once you are done with it: no need to write a try ... finally mustache.Free; end
block.

You can use a TDocVariant to supply the context data (with late-binding):

 TDocVariant.New(doc);
 doc.name := 'Chris';
 doc.value := 10000;

As an alternative, you may have defined the context data as such:

 doc := _ObjFast(['name','Chris','value',1000]);

Now you can render the template with this context:

 html := mustache.Render(doc);
 // now html='Hello Chris'#13#10'You have just won 10000 dollars!'

If you want to supply the context data as JSON, then render it, you may write:

 mustache := TSynMustache.Parse(
 'Hello {{value.name}}'#13#10'You have just won {{value.value}} dollars!');
 html := mustache.RenderJSON('{value:{name:"Chris",value:10000}}');
 // now html='Hello Chris'#13#10'You have just won 10000 dollars!'

Note that here, the JSON is supplied with an extended syntax (i.e. field names are unquoted), and that
TSynMustache is able to identify a dotted-named variable within the execution context.

As an alternative, you could use the following syntax to create the data context as JSON, with a set of
parameters, therefore easier to work with in real code storing data in variables (for instance, any
string variable is quoted as expected by JSON, and converted into UTF-8):

 mustache := TSynMustache.Parse(
 'Hello {{name}}'#13#10'You have just won {{value}} dollars!');
 html := mustache.RenderJSON('{name:?,value:?}',[],['Chris',10000]);
 html='Hello Chris'#13#10'You have just won 10000 dollars!'

You can find in the mORMot.pas unit the ObjectToJSON() function which is able to transform any
TPersistent instance into valid JSON content, ready to be supplied to a TSynMustache compiled
instance.
If the object's published properties have some getter functions, they will be called on the fly to
process the data (e.g. returning 'FirstName Name' as FullName by concatenating both sub-fields).

Synopse mORMot Framework
SynMustache library

 SynMustache Page 13 of 20

7.3.2.4.2. Sections

Sections are handled as expected:

 mustache := TSynMustache.Parse('Shown.{{#person}}As {{name}}!{{/person}}end{{name}}');
 html := mustache.RenderJSON('{person:{age:?,name:?}}',[10,'toto']);
 // now html='Shown.As toto!end'

Note that the sections change the data context, so that within the #person section, you can directly
access to the data context person member, i.e. writing directly {{name}}

It supports also inverted sections:

 mustache := TSynMustache.Parse('Shown.{{^person}}Never shown!{{/person}}end');
 html := mustache.RenderJSON('{person:true}');
 // now html='Shown.end'

To render a list of items, you can write for instance (using the {{.}} pseudo-variable):

 mustache := TSynMustache.Parse('{{#things}}{{.}}{{/things}}');
 html := mustache.RenderJSON('{things:["one", "two", "three"]}');
 // now html='onetwothree'

The {{-index}} pseudo-variable allows to numerate the list items, when rendering:

 mustache := TSynMustache.Parse(
 'My favorite things:'#$A'{{#things}}{{-index}}. {{.}}'#$A'{{/things}}');
 html := mustache.RenderJSON('{things:["Peanut butter", "Pen spinning", "Handstands"]}');
 // now html='My favorite things:'#$A'1. Peanut butter'#$A'2. Pen spinning'#$A+
 // '3. Handstands'#$A,'-index pseudo variable'

7.3.2.4.3. Partials

External partials (i.e. standard Mustache partials) can be defined using TSynMustachePartials. You
can define and maintain a list of TSynMustachePartials instances, or you can use a one-time partial,
for a given rendering process, as such:

 mustache := TSynMustache.Parse('{{>partial}}'#$A'3');
 html := mustache.RenderJSON('{}',TSynMustachePartials.CreateOwned(['partial','1'#$A'2']));
 // now html='1'#$A'23','external partials'

Here TSynMustachePartials.CreateOwned() expects the partials to be supplied as name/value
pairs.

Internal partials (one of the SynMustache extensions), can be defined directly in the main template:

 mustache := TSynMustache.Parse('{{<partial}}1'#$A'2{{name}}{{/partial}}{{>partial}}4');
 html := mustache.RenderJSON('{name:3}');
 // now html='1'#$A'234','internal partials'

Synopse mORMot Framework
SynMustache library

 SynMustache Page 14 of 20

7.3.2.4.4. Internationalization

You can define {{"some text}} pseudo-variables in your templates, which text will be supplied to a
callback, ready to be transformed on the fly: it may be convenient for i18n of web applications.

By default, the text will be written directly to the output buffer, but you can define a callback which
may be used e.g. for text translation:

procedure TTestLowLevelTypes.MustacheTranslate(var English: string);
begin
 if English='Hello' then
 English := 'Bonjour' else
 if English='You have just won' then
 English := 'Vous venez de gagner';
end;

Of course, in a real application, you may assign one TLanguageFile.Translate(var English:
string) method, as defined in the mORMoti18n.pas unit.

Then, you will be able to define your template as such:

 mustache := TSynMustache.Parse(
 '{{"Hello}} {{name}}'#13#10'{{"You have just won}} {{value}} {{"dollars}}!');
 html := mustache.RenderJSON('{name:?,value:?}',[],['Chris',10000],nil,MustacheTranslate);
 // now html='Bonjour Chris'#$D#$A'Vous venez de gagner 10000 dollars!'

All text has indeed been translated as expected.

Synopse mORMot Framework
SynMustache library

 SynMustache Page 15 of 20

24.18. SynMustache.pas unit

Purpose: Logic-less mustache template rendering
- this unit is a part of the freeware Synopse mORMot framework, licensed under a MPL/GPL/LGPL tri-
license; version 1.18

Units used in the SynMustache unit:

Unit Name Description Page

SynCommons Common functions used by most Synopse projects
- this unit is a part of the freeware Synopse mORMot framework,
licensed under a MPL/GPL/LGPL tri-license; version 1.18

Erreu
r !

Signet
non

défini
.

TObject

TSynMustachePartials

TSynMustacheContext

TSynMustache

TSynMustacheContextVariant

ESynException ESynMustache

SynMustache class hierarchy

Objects implemented in the SynMustache unit:

Objects Description Page

ESynMustache Exception raised during process of a {{mustache}} template 16

TSynMustache Stores one {{mustache}} pre-rendered template 18

TSynMustacheContext Handle {{mustache}} template rendering context, i.e. all values 16

TSynMustacheContextVa
riant

Handle {{mustache}} template rendering context from a custom variant 16

TSynMustachePartials Maintain a list of {{mustache}} partials 17

Synopse mORMot Framework
SynMustache library

 SynMustache Page 16 of 20

Objects Description Page

TSynMustacheTag Store a {{mustache}} tag 16

ESynMustache = class(ESynException)

Exception raised during process of a {{mustache}} template

TSynMustacheTag = record

Store a {{mustache}} tag

Kind: TSynMustacheTagKind;

The kind of the tag

SectionOppositeIndex: integer;

The index in Tags[] of the other end of this section
- either the index of mtSectionEnd for mtSection/mtInvertedSection
- or the index of mtSection/mtInvertedSection for mtSectionEnd

TextLen: integer;

Stores the mtText buffer length

TextStart: PUTF8Char;

Points to the mtText buffer start
- main template's text is not allocated as a separate string during parsing, but will rather be
copied directly from the template memory

Value: RawUTF8;

The tag content, excluding trailing {{ }} and corresponding symbol
- is not set for mtText nor mtSetDelimiter

TSynMustacheContext = class(TObject)

Handle {{mustache}} template rendering context, i.e. all values
- this abstract class should not be used directly, but rather any other the overriden classes

constructor Create(WR: TTextWriter);

Initialize the rendering context for the given text writer

property OnStringTranslate: TOnStringTranslate read fOnStringTranslate write
fOnStringTranslate;

Access to the {{"English text}} translation callback

property Writer: TTextWriter read fWriter;

Read-only access to the associated text writer instance

TSynMustacheContextVariant = class(TSynMustacheContext)

Handle {{mustache}} template rendering context from a custom variant
- the context is given via a custom variant type implementing TSynInvokeableVariantType.Lookup,
e.g. TDocVariant or TSMVariant

Synopse mORMot Framework
SynMustache library

 SynMustache Page 17 of 20

constructor Create(WR: TTextWriter; SectionMaxCount: integer; const aDocument:
variant);

Initialize the context from a custom variant document
- note that the aDocument instance shall be available during all lifetime of this
TSynMustacheContextVariant instance
- you should not use this constructor directly, but the corresponding TSynMustache.Render*()
methods

TSynMustachePartials = class(TObject)

Maintain a list of {{mustache}} partials
- this list of partials template could be supplied to TSynMustache.Render() method, to render
{{>partials}} as expected
- using a dedicated class allows to share the partials between execution context, without recurring
to non SOLID global variables
- you may also define "internal" partials, e.g. {{<foo}}This is foo{{/foo}}

constructor Create; overload;

Initialize the template partials storage
- after creation, the partials should be registered via the Add() method
- you shall manage this instance life time with a try..finally Free block

constructor CreateOwned(const NameTemplatePairs: array of RawUTF8); overload;

Initialize a template partials storage with the supplied templates
- partials list is expected to be supplied in Name / Template pairs
- this instance can be supplied as parameter to the TSynMustache.Render() method, which will
free the instances as soon as it finishes

destructor Destroy; override;

Delete the partials

class function CreateOwned(const Partials: variant): TSynMustachePartials;
overload;

Initialize a template partials storage with the supplied templates
- partials list is expected to be supplied as a dvObject TDocVariant, each member being the
name/template string pairs
- if the supplied variant is not a matching TDocVariant, will return nil
- this instance can be supplied as parameter to the TSynMustache.Render() method, which will
free the instances as soon as it finishes

procedure Add(const aName: RawUTF8; aTemplateStart,aTemplateEnd: PUTF8Char);
overload;

Register a {{>partialName}} template

procedure Add(const aName,aTemplate: RawUTF8); overload;

Register a {{>partialName}} template

Synopse mORMot Framework
SynMustache library

 SynMustache Page 18 of 20

TSynMustache = class(TObject)

Stores one {{mustache}} pre-rendered template
- once parsed, a template will be stored in this class instance, to be rendered lated via the
Render() method
- you can use the Parse() class function to maintain a shared cache of parsed templates
- implements all official mustache specifications, and some extensions
- handles {{.}} pseudo-variable for the current context object (very handy when looping through a
simple list, for instance)
- handles {{-index}} pseudo-variable for the current context array index (1-based value) so that e.g.
"My favorite things:\n{{#things}}{{-index}}. {{.}}\n{{/things}}" over {things:["Peanut butter", "Pen
spinning", "Handstands"]} renders as "My favorite things:\n1. Peanut butter\n2. Pen spinning\n3.
Handstands\n"
- handles -first -last and -odd pseudo-section keys, e.g. "{{#things}}{{^-first}}, {{/-
first}}{{.}}{{/things}}" over {things:["one", "two", "three"]} renders as 'one, two, three'
- allows inlined partial templates , to be defined e.g. as {{<foo}}This is the foo partial {{myValue}}
template{{/foo}}
- features {{"English text}} translation, via a custom callback
- this implementation is thread-safe and re-entrant (i.e. the same TSynMustache instance can be
used by several threads at once)

constructor Create(const aTemplate: RawUTF8); overload;

Initialize and parse a pre-rendered {{mustache}} template
- you should better use the Parse() class function instead, which features an internal thread-
safe cache

constructor Create(aTemplate: PUTF8Char; aTemplateLen: integer); overload;
virtual;

Initialize and parse a pre-rendered {{mustache}} template
- you should better use the Parse() class function instead, which features an internal thread-
safe cache

destructor Destroy; override;

Finalize internal memory

class function Parse(const aTemplate: RawUTF8): TSynMustache;

Parse a {{mustache}} template, and returns the corresponding TSynMustache instance
- an internal cache is maintained by this class function
- this implementation is thread-safe and re-entrant: i.e. the same TSynMustache returned
instance can be used by several threads at once

Synopse mORMot Framework
SynMustache library

 SynMustache Page 19 of 20

function Render(const Context: variant; Partials: TSynMustachePartials=nil;
OnTranslate: TOnStringTranslate=nil): RawUTF8; overload;

Renders the {{mustache}} template from a variant defined context
- the context is given via a custom variant type implementing
TSynInvokeableVariantType.Lookup, e.g. TDocVariant or TSMVariant
- you can specify a list of partials via TSynMustachePartials.CreateOwned or a custom {{"English
text}} callback
- can be used e.g. via a TDocVariant:
var mustache := TSynMustache;
 doc: variant;
 html: RawUTF8;
begin
 mustache := TSynMustache.Parse(
 'Hello {{name}}'#13#10'You have just won {{value}} dollars!');
 TDocVariant.New(doc);
 doc.name := 'Chris';
 doc.value := 10000;
 html := mustache.Render(doc);
 // here html='Hello Chris'#13#10'You have just won 10000 dollars!'

function RenderJSON(const JSON: RawUTF8; Partials: TSynMustachePartials=nil;
OnTranslate: TOnStringTranslate=nil): RawUTF8; overload;

Renders the {{mustache}} template from JSON defined context
- the context is given via a JSON object, defined from UTF-8 buffer
- you can specify a list of partials via TSynMustachePartials.CreateOwned or a custom {{"English
text}} callback
- is just a wrapper around Render(_JsonFast())
- you can write e.g. with the extended JSON syntax:
 html := mustache.RenderJSON('{things:["one", "two", "three"]}');

function RenderJSON(JSON: PUTF8Char; const Args,Params: array of const;
Partials: TSynMustachePartials=nil; OnTranslate: TOnStringTranslate=nil):
RawUTF8; overload;

Renders the {{mustache}} template from JSON defined context
- the context is given via a JSON object, defined with parameters
- you can specify a list of partials via TSynMustachePartials.CreateOwned or a custom {{"English
text}} callback
- is just a wrapper around Render(_JsonFastFmt())
- you can write e.g. with the extended JSON syntax:
 html := mustache.RenderJSON('{name:?,value:?}',[],['Chris',10000]);

class function UnParse(const aTemplate: RawUTF8): boolean;

Remove the specified {{mustache}} template from the internal cache
- returns TRUE on success, and FALSE if the template was not cached by a previous call to
Parse() class function

procedure Render(Context: TSynMustacheContext; TagStart,TagEnd: integer;
Partials: TSynMustachePartials; NeverFreePartials: boolean); overload;

Renders the {{mustache}} template into a destination text buffer
- the context is given via our abstract TSynMustacheContext wrapper
- the rendering extended in fTags[] is supplied as parameters
- you can specify a list of partials via TSynMustachePartials.CreateOwned

Synopse mORMot Framework
SynMustache library

 SynMustache Page 20 of 20

property SectionMaxCount: Integer read fSectionMaxCount;

The maximum possible number of nested contexts

property Template: RawUTF8 read fTemplate;

Read-only access to the raw {{mustache}} template content

Types implemented in the SynMustache unit:

TSynMustacheSectionType = (msNothing, msSingle, msSinglePseudo, msList);

States the section content according to a given value
- msNothing for false values or empty lists
- msSingle for non-false values but not a list
- msList for non-empty lists

TSynMustacheTagDynArray = array of TSynMustacheTag;

Store all {{mustache}} tags of a given template

TSynMustacheTagKind =
(mtVariable, mtVariableUnescape, mtSection, mtInvertedSection, mtSectionEnd,
mtComment, mtPartial, mtSetPartial, mtSetDelimiter, mtTranslate, mtText);

Identify the {{mustache}} tag kind
- mtVariable if the tag is a variable - e.g. {{myValue}}
- mtVariableUnescaped to unescape the variable HTML - e.g. {{{myRawValue}}} or {{& name}}
- mtSection and mtInvertedSection for sections beginning - e.g. {{#person}} or {{^person}}
- mtSectionEnd for sections ending - e.g. {{/person}}
- mtComment for comments - e.g. {{! ignore me}}
- mtPartial for partials - e.g. {{> next_more}}
- mtSetPartial for setting an internal partial - e.g. {{<foo}}This is the foo partial {{myValue}}
template{{/foo}}
- mtSetDelimiter for setting custom delimeter symbols - e.g. {{=<% %>=}} - Warning: current
implementation only supports two character delimiters
- mtTranslate for content i18n via a callback - e.g. {{"English text}}
- mtText for all text that appears outside a symbol

